Подобие

Материал из testwiki
Версия от 14:24, 21 января 2025; 91.209.147.234 (обсуждение)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Шаблон:Другие значения

Подобные фигуры на рисунке имеют одинаковые цвета

Подо́бие — преобразование евклидова пространства, при котором для любых двух точек A, B и их образов A, B имеет место соотношение |AB|=k|AB|, при некотором фиксированном k0, называемым коэффициентом подобия.

Понятие подобия определяется аналогично для метрических, для римановых пространств (см. раздел Обобщения).

История

Подобные фигуры рассматривались в Древней Греции в V—IV веках до нашей эры; они появляются в трудах Гиппократа Хиосского, Архита Тарентского, Евдокса Книдского и в VI книге «Начал» Евклида.

Частные случаи

Связанные определения

  • Фигура F называется подобной фигуре F, если существует преобразование подобия, при котором FF.
    • Подобие фигур является отношением эквивалентности.
    • Для обозначения подобия обычно используется значок  — FF означает, что фигуры F и F подобны.

Метод подобия

Подобие фигур применяется к решению многих задач на построение.

Метод подобия состоит в том, что, пользуясь некоторыми данными задачи, строят сначала фигуру, подобную искомой, а затем переходят к искомой. Этот метод особенно удобен тогда, когда только одна данная величина есть длина, а все прочие величины — или углы, или отношения линий.

Классическим примером задачи на метод подобия является построение окружности, касающейся двух сторон данного угла и проходящей через данную точку[1].

Свойства

  • Подобие есть взаимно однозначное отображение евклидова пространства на себя.
  • Подобие является аффинным преобразованием плоскости.
  • Подобие сохраняет порядок точек на прямой, то есть если точка B лежит между точками A, C и B, A, C — соответствующие их образы при некотором подобии, то B также лежит между точками A и C.
  • Точки, не лежащие на прямой, при любом подобии переходят в точки, не лежащие на одной прямой.
  • Подобие преобразует прямую в прямую, отрезок в отрезок, луч в луч, угол в угол, окружность в окружность.
  • Подобие сохраняет величины углов между кривыми.
  • Подобие с коэффициентом k=1, преобразующее каждую прямую в параллельную ей прямую, является гомотетией с коэффициентом k или k.
    • Каждое подобие можно рассматривать как композицию движения D и некоторой гомотетии Γ с положительным коэффициентом.
    • Подобие называется собственным (несобственным), если движение D является собственным (несобственным). Собственное подобие сохраняет ориентацию фигур, а несобственное — изменяет ориентацию на противоположную.
  • Два треугольника в евклидовой геометрии являются подобными, если
  • Площади подобных фигур пропорциональны квадратам их сходственных линий (например, сторон). Так, площади кругов пропорциональны отношению квадратов их радиусов.

Обобщения

Аналогично определяется подобие (с сохранением указанных выше свойств) в 3-мерном евклидовом пространстве, а также в n-мерном евклидовом и псевдоевклидовом пространствах.

В метрических пространствах так же, как в n-мерных римановых, псевдоримановых и финслеровых пространствах подобие определяется как преобразование, переводящее метрику пространства в себя с точностью до постоянного множителя.

Совокупность всех подобий n-мерного евклидова, псевдоевклидова, риманова, псевдориманова или финслерова пространства составляет r-членную группу преобразований Ли, называемой группой подобных (гомотетических) преобразований соответствующего пространства. В каждом из пространств указанных типов r-членная группа подобных преобразований Ли содержит (r1)-членную нормальную подгруппу движений.

См. также

Примечания

Шаблон:Примечания

Ссылки

Шаблон:Библиоинформация