Константа Майсселя — Мертенса

Материал из testwiki
Перейти к навигации Перейти к поиску
В пределе сумма обратных значений простых чисел, меньших n, и функция ln(ln n) отличаются на константу, константу Майсселя — Мертенса (помечена буквой M).

Константа Майсселя — Мертенса — это математическая константа в теории чисел, определяемая как предел разности между гармоническим рядом, суммируемым только по простым числам, и натуральным логарифмом натурального логарифма:

M=limn(pn1pln(lnn))=γ+p[ln(11p)+1p].
График гармонической суммы простых чисел для n=215,216,,2467.04×1013 и приближение Мертенса для неё. График имеет по оси y длину 8 см и представляет интервал (2.5, 3.8). Если бы ось n была представлена в линейной шкале, а не в логарифмической, то она была бы длиной 5.33(3)×109 км — размер Солнечной системы.

Здесь γ — постоянная Эйлера — Маскерони, которая имеет аналогичное определение для суммы по всем целым числам (не только по простым).

Константа названа именами Эрнста Майсселя и Франца Мертенса. Она упоминается также как константа Мертенса, константа Кронекера, константа Адамара — Валле-Пуссена или константа обратных значений простых чисел.

Значение M равно примерно

M ≈ 0,2614972128476427837554268386086958590516… (Шаблон:OEIS).

Шаблон:Не переведено 5 устанавливает, что предел существует.

Факт, что имеется два логарифма (логарифм от логарифма) в пределе для константы Майсселя — Мертенса, можно рассматривать как следствие комбинации теоремы о распределении простых чисел и предела постоянной Эйлера — Маскерони.

В популярной культуре

Константу Майсселя — Мертенса использовала компания Google для предложения цены на аукционе патента Nortel. Google выставил три предложения цены, основанных на математических константах — $1.902.160.540 (константа Бруна), $2.614.972.128 (константа Майсселя — Мертенса) и $3,14159 миллиарда (π)Шаблон:Sfn.

См. также

Примечания

Шаблон:Примечания

Литература

Шаблон:Refbegin Шаблон:Статья Шаблон:Refend

Ссылки

Шаблон:Rq Шаблон:Числа с собственными именами