Модель растущего разнообразия товаров

Моде́ль расту́щего разнообра́зия това́ров (модель Пола Ромера, Шаблон:Lang-en) — трёхсекторная модель эндогенного экономического роста в условиях монополистической конкуренции, показывающая возможность существования устойчивого экономического роста, обусловленного поведенческими факторами. В модели технологический прогресс является следствием целенаправленной деятельности экономических агентов по инвестированию в новые технологии с целью извлечения прибыли. Модель внесла существенный вклад в понимание того, каким образом решения индивидов влияют на темпы экономического роста, а также причин, по которым бедные страны не могут догнать богатые. Разработана в 1988 году Полом Ромером.
История создания
В первых моделях экономического роста (модель Солоу, модель Харрода — Домара) использовались экзогенно задаваемые параметры «норма сбережений» и «темп научного прогресса», от которых в конечном итоге и зависят темпы роста экономики. Исследователи же хотели получить обоснование темпов экономического роста внутренними (эндогенными) факторами, поскольку модели с нормой сбережений имели ряд недостатков. Эти модели не объясняли устойчивые различия в уровнях и темпах роста между развивающимися и развитыми странами. Появившиеся позже модели Рамсея — Касса — Купманса и пересекающихся поколений преодолели недостаток экзогенности нормы сбережений — теперь эта величина определялась исходя из индивидуальных решений экономических агентов. Однако темп научного прогресса остался экзогенным в этих моделях, и во многом поэтому они тоже не смогли объяснить межстрановые различия. Модели, объясняющие экономический рост путём переопределения понятия «капитал», и включившие человеческий капитал в производственную функцию (например, модель Мэнкью — Ромера — Вейла) также не объясняют всех различий между темпами роста и уровнем развития разных стран, даже после учёта различий в человеческом капиталеШаблон:Sfn. Это показали, например, исследования Р. Холла и Ч. ДжонсаШаблон:Sfn, Дж. Де ЛонгаШаблон:Sfn, П. РомераШаблон:Sfn. Попытки прямого включения переменной научного прогресса в производственную функцию натолкнулись на ограничение, связанное с отдачей от масштаба. В условиях совершенной конкуренции при постоянной отдаче от масштаба доход фирмы полностью уходил на оплату труда и капитала. Поэтому будущий лауреат Нобелевской премии по экономике Пол Ромер предложил использовать в моделях монополистическую конкуренцию для объяснения темпов технологического прогрессаШаблон:Sfn. Модель растущего разнообразия товаровШаблон:SfnШаблон:SfnШаблон:SfnШаблон:SfnШаблон:Sfn (также известная как модель Пола РомераШаблон:Sfn) была представлена на конференции «Проблема экономического развития: изучение экономического развития через свободное предпринимательство», состоявшейся в Университете штата Нью-Йорк в Буффало в мае 1988 года, опубликована в работе Пола Ромера «Эндогенные технологические изменения»Шаблон:Sfn в декабре 1989 года в NBER и издана в Шаблон:Нп3 в 1990 годуШаблон:Sfn.
Описание модели
Базовые предпосылки модели
В модели рассматривается закрытая экономика. Фирмы максимизируют свою прибыль, а потребители — полезность. В экономике существует три сектора: Шаблон:Нп3, Шаблон:Нп3 и НИОКР. Сектор конечной продукции работает в условиях совершенной конкуренции. Сектор промежуточной продукции работает в условиях монополистической конкуренции. Сектор НИОКР продает свои патенты на изобретенные продукты сектору промежуточных товаров. Экономический рост в модели происходит за счёт увеличения числа промежуточных товаров. В качестве работника и потребителя в модели выступает бесконечно живущий индивид (или домохозяйство). Предполагается, что между разными поколениями существуют альтруистические связи, при принятии решений домохозяйство учитывает ресурсы и потребности не только настоящих, но и будущих своих членов, что делает его решения аналогичным решениям бесконечно живущего индивида. Время изменяется непрерывноШаблон:SfnШаблон:Sfn.
Трудовые ресурсы , считающиеся в модели постоянными (), распределены между секторами производства конечной продукции и НИОКРШаблон:Sfn:
- ,
- где — трудовые ресурсы, занятые в производстве, которые в модели считаются постоянными во времени, , — трудовые ресурсы в научно-исследовательском секторе, .
Производственная функция обладает убывающей предельной производительностью, постоянной отдачей от масштаба и представляет собой функцию Диксита — СтиглицаШаблон:Sfn:
- ,
- где — выпуск конечного продукта, — уровень технологической производительности в экономике, , — эластичность выпуска по промежуточному товару, , , — количество используемого -го промежуточного продукта, — количество промежуточных продуктов в экономике в момент времени .
Физический капитал в экономике равен сумме промежуточных продуктов, каждый из которых полностью используется в производственном циклеШаблон:Sfn:
- .
Цена единицы выпуска конечного продукта в модели: . Это означает, что цены промежуточных продуктов даны как отношение к цене конечного продукта: . Реальная заработная плата равна .
Инвестиции в модели равны сбережениям и вычисляются исходя из тождества системы национальных счетовШаблон:Sfn:
- ,
- где — совокупное потребление, — потребление на единицу труда в момент времени , — производная капитала по времени.
Функция полезности потребителя обладает постоянной эластичностью замещения по времени, как и в модели Рамсея — Касса — КупмансаШаблон:Sfn:
- ,
- где — эластичность замещения по времени, , , — коэффициент межвременного предпочтения потребителя, , . Функция удовлетворяет условиям и условиям Инады (при потреблении, стремящемся к нулю, предельная полезность стремится к бесконечности, при потреблении, стремящемся к бесконечности, предельная полезность стремится к нулю): .
Как и в модели Рамсея — Касса — Купманса, доходы индивида состоят из заработной платы и поступлений от активов . Активы индивида могут быть как положительными, так и отрицательными (долг). Процентная ставка по вложениям и по долгу в модели принята одинаковой. В связи с этим в модели присутствует условие отсутствия схемы Понци (финансовой пирамиды): нельзя бесконечно выплачивать старые долги за счет новыхШаблон:Sfn:
- ,
- где — в закрытой экономике весь капитал принадлежит резидентам, а величина активов индивида совпадает с запасом капитала на одного работающего.
Задача фирмы и производство промежуточного и конечного продуктов
Сектор конечной продукции работает в условиях совершенной конкуренции. Задача фирмы-производителя конечных товаров выглядит следующим образомШаблон:SfnШаблон:Sfn:
- ,
Необходимые условия максимума выглядят следующим образомШаблон:SfnШаблон:Sfn:
- ,
Для упрощения вычислений автор принимает предпосылку о том, что все промежуточные продукты одинаковыШаблон:Sfn , что означает, что и их цены равны: . В этом случае функция спроса на -й промежуточный продукт имеет вид:
- .
Далее вводится предпосылка о том, что ввод нового -го товара вознаграждается монополией на его производство, а издержки единицы промежуточного продукта равны . Тогда задача максимизации прибыли монополиста-производителя нового товара примет следующий вид:
- .
Откуда следует, что цена нового товара равна: .
Поскольку действует предпосылка о симметрии, это означает, что цены всех промежуточных товаров равны между собой. В итоге получаем производственную функцию следующего видаШаблон:Sfn:
- .
Прибыль производителя промежуточного продукта — — равнаШаблон:Sfn:
- .
Научно-исследовательский сектор и патенты
Патент в модели даёт монопольное право на производство одного вида промежуточного продукта. Цена патента равна стоимости будущей дисконтированной прибыли фирмы-монополиста. — цена патента, имеет следующий видШаблон:SfnШаблон:Sfn:
- ,
- где — процентная ставка.
Производная по времени имеет следующий вид: .
Производственная функция научного-исследовательского сектора в модели находится из следующего дифференциального уравненияШаблон:Sfn:
- ,
- где — производительность в научно-исследовательском секторе, , — производная количества промежуточных продуктов по времени, также предполагается положительный внешний эффект от количества промежуточных товаров .
Научно-исследовательский сектор работает в условиях совершенной конкуренции, потому цена патента равна предельным издержкам по разработке новой технологии Шаблон:Sfn:
- .
Задача потребителя и экономический рост
Доходы индивида расходуются либо на потребление, либо на увеличение активов (сбережений). С учетом того, что население постоянно, бюджетное ограничение имеет вид:
- .
Задача потребителя, как и в большинстве других моделей экономического роста, в том, чтобы максимизировать свою полезность. Максимум функции полезности находится путём построения функции Гамильтона и нахождения её максимума с помощью принципа максимума Понтрягина.
Функция Гамильтона выглядит следующим образомШаблон:SfnШаблон:Sfn:
- при условии:
- .
Условие максимума первого порядка: .
Фазовая координата (сопряжённое уравнение): , где — производная по времени.
Условие трансверсальности (при невыполнении которого найденное решение может оказаться не максимумом, а седловой точкой): , где представляют собой Шаблон:Нп3 активовШаблон:Sfn (теневые цены учитывают внешние эффекты в стоимости товаров, если фирмы и потребители принимают решения в соответствии со структурой цен, пропорциональной теневой, то в экономике достигается оптимальное по Парето состояние). В данном случае условие трансверсальности совпадает с ограничением на отсутствие схемы ПонциШаблон:SfnШаблон:Sfn.
Решение выглядит следующим образомШаблон:SfnШаблон:Sfn:
- ,
- где — производная потребления на душу населения по времени.
В устойчивом состоянии темпы роста потребления равны темпам роста выпуска и капитала, а в равновесном состоянии цена патента постоянна, потомуШаблон:SfnШаблон:Sfn:
- ,
- ,
- где — производная выпуска по времени.
Таким образом, внутренние параметры модели определяют темпы экономического роста без участия экзогенно задаваемой нормы сбережений.
Оптимальные темпы роста
Оптимальные с точки зрения общества в целом темпы роста находятся из решения следующей задачи централизованного планированияШаблон:SfnШаблон:Sfn:
- при условиях
- ,
- ,
- .
Для решения этой задачи динамической оптимизации строится функция Гамильтона, которая решается при помощи принципа максимума ПонтрягинаШаблон:Sfn:
- .
Условия максимума первого порядка:
- ,
- ,
- .
Фазовые координаты (сопряжённые уравнения):
- ,
- ,
где и — производные и по времени, где представляет собой теневую цену капитала, а — теневую цену научных исследований.
Исходя из фазовых координат и условий максимума первого порядка находятся оптимальные темпы ростаШаблон:Sfn:
- .
Более высокие темпы роста при централизованном планировании (поскольку )Шаблон:Sfn, чем при максимизации прибылей фирм-монополистов, достигаются за счёт того, что, во-первых, учитывается весь объём выпуска, а не только прибыль монополистов, во-вторых, учитывается отдача всех трудовых ресурсов , а не только тех, которые формируют прибыль монополистов, и в-третьих, уровень финансирования научно-исследовательского сектора выше. Однако данные темпы роста достижимы лишь в теории, механизма перехода к оптимальным параметрам модель не предполагаетШаблон:Sfn.
Преимущества, недостатки и дальнейшее развитие модели
В предшествующих моделях экономического роста (например, АК-модель, модель пересекающихся поколений, модель Рамсея — Касса — Купманса) не была раскрыта целенаправленная деятельность экономических агентов по инвестированию в новые технологии с целью извлечения прибыли. В них инвестиционные решения принимаются опосредованно, через оптимальный уровень физического капитала. Явная же спецификация издержек и выгод от инвестиций отсутствовала. Модель растущего разнообразия товаров преодолела этот недостаток: в ней издержки и выгоды от инвестиций отражены в явном виде. Таким образом, экономический рост в модели является следствием решений индивидов, а не экзогенно задаваемой переменной, что является несомненным её преимуществомШаблон:Sfn. Вследствие этого модель растущего разнообразия товаров существенно лучше объясняет различия в технологическом уровне между странами, чем предшествующие модели, которые в большинстве своём предполагали наличие абсолютной или условной конвергенции, что означает, что бедные страны по своему уровню развития должны догонять богатые. В реальности же лишь есть лишь единичные примеры (японское экономическое чудо, корейское экономическое чудо), когда бедные страны смогли догнать богатые по уровню ВВП на душу населения, в большинстве случаев сближения уровня развития не происходитШаблон:Sfn. Модель растущего разнообразия товаров не предполагает ни абсолютной, ни условной конвергенции, так как темпы роста не падают с ростом объёма выпуска, а значит, в рамках её предпосылок бедные страны не могут догнать богатыеШаблон:Sfn.
Вместе с тем существенным недостатком модели является отсутствие перетока технологий между странамиШаблон:Sfn. Однако модель обладает большим потенциалом для дальнейших расширений и включения дополнительных эффектовШаблон:Sfn. Этим воспользовались Роберт Барро и Хавьер Сала-и-Мартин, создавшие модель распространения технологий, преодолевшую этот недостатокШаблон:Sfn. В их исследовании моделируется процесс движения технологий между странами. Страны делятся на 2 группы: страны-лидеры разрабатывает новые технологии, а страны-последователи пытаются их повторить. В этой модели наблюдается условная конвергенция. Помимо этого, в модели Барро и Сала-и-Мартина показано, что страны-последователи имеют более высокую ставку процента, чем страны-лидеры, но она снижается в долгосрочном периоде. В странах-лидерах ставка процента колеблется вокруг равновесного значенияШаблон:Sfn.
Другим существенным недостатком модели является зависимость темпов роста от объёма трудовых ресурсов , что предполагает, что большие (с точки зрения населения) страны должны расти существенно быстрее малых, что не нашло эмпирического подтвержденияШаблон:Sfn. Например, Чарльз Джонс показал, что это не соответствует эмпирическим данным. В своей работе Джонс предложил Шаблон:Нп3, объясняющую полученные результаты, которая является упрощённой модификацией модели растущего разнообразия товаров, в которой количество инноваций зависит не от общего числа, а от доли населения, занятого в секторе НИОКРШаблон:Sfn.
Джин Гроссман и Эльханан Хелпман использовали модель растущего разнообразия товаров для анализа последствий мировой торговлиШаблон:Sfn. Модель Ромера является одним из источников Шаблон:Нп3, в частности, моделей приспособленности стран и сложности продуктов, разрабатываемых Шаблон:Нп3 и его коллегамиШаблон:Sfn.
В 2018 году Пол Ромер получил Нобелевскую премию по экономике, и ряд экспертов связывают её с разработкой модели растущего разнообразия товаров, поскольку она стала основой для исследований разницы между богатыми и бедными странами, а также позволяет рассчитать стоимость патента[1][2][3].
Примечания
Литература
- Шаблон:Книга
- Шаблон:Статья
- Шаблон:Книга
- Шаблон:Книга
- Шаблон:Книга
- Шаблон:Книга
- Шаблон:Статья
- Шаблон:Статья
- Шаблон:Книга
- Шаблон:Статья
- Шаблон:Статья
- Шаблон:Статья
- Шаблон:Статья
- Шаблон:Статья
- Шаблон:Статья
- Шаблон:Статья
- Шаблон:Статья
- Шаблон:Статья