Можно ли услышать форму барабана?

Материал из testwiki
Перейти к навигации Перейти к поиску
Первый пример двух неконгруэнтных барабанов, звучащих одинаково. Обратите внимание, что фигуры имеют равные площади и периметры

«Можно ли услышать форму барабана?» — вопрос Липмана Берса, восходящий к Герману Вейлю.

Частоты, на которых барабанная мембрана может вибрировать, однозначно зависят от его формы. Спрашивается: однозначно ли можно восстановить форму барабана, если все его частоты известны?

Формулировка «Можно ли услышать форму барабана?» появляется в статье Марка Каца, опубликованной в 1966 году[1]. Эта статья популяризовала вопрос и таким образом сыграла заметную роль в развитии математики на несколько десятилетий. За неё Кац был удостоен Шаблон:Нп1 в 1967 году и Шаблон:Нп1 в 1968 году[2].

Формулировка

Барабан мыслится как плоская область D, граница которой фиксирована. Обозначим через λn её n-ое собственное значение для лапласиана с условием Дирихле на границе. То есть нас интересуют значения λ, для которых существует функция u:D такая, что

{Δu+λu=0,u|D=0.

Две области называются изоспектральными, если они имеют одинаковые собственные значения, учитывая кратность.

Поэтому вопрос можно переформулировать так:

  • Существуют ли две изоспектральные и неконгруэнтные области?

Вариации

Аналогичные вопросы можно задать про уравнения Лапласа на областях в старших размерностях, также на римановых многообразиях и для других эллиптических дифференциальных операторов, таких как оператор Коши — Римана или оператор Дирака. Можно накладывать другие граничные условия, в частности условие Неймана.

Ответы

Плоские торы

Почти сразу Джон Милнор построил пару изоспектральных неизометричных 16-мерных торов. Позже подобные примеры были построены во всех размерностях начиная с четырёх. При этом в размерностях 2 и 3 таких примеров не существует. Трёхмерный случай потребовал серьёзных компьютерных вычислений.

Таким образом, «форму плоского тора нельзя услышать полностью в размерностях 4 и выше».

Области на плоскости

Однопараметрическое семейство пар изоспектральных барабанов. Каждый из двух барабанов составлен из 7 равных треугольников[3]

В 1992 году Гордон, Уэбб и Уолперт построили пару неконгруэнтных изоспектральных невыпуклых многоугольников (см. рисунок).

Доказательство того, что оба многоугольника имеют одинаковые собственные значения, использует симметрии и вполне элементарно. Короткое доказательство более общего утверждения приведено в книге Конвея.

Таким образом, «форму барабана нельзя услышать полностью».

Частные случаи

Вместе с тем, многие характеристики этой формы восстановимы.

  • Согласно формуле Вейля, площадь может быть однозначно восстановлена по спектру.
    • По теореме Иврия тоже верно и для периметров областей с гладкой границей.[4]
  • Если область выпукла, а её граница аналитическая, то спектр позволяет однозначно установить её форму.Шаблон:Нет АИ
    • Вопрос остаётся открытым для невыпуклых областей с аналитической границей.
  • Известно, что множество изоспектральных областей компактно в C-топологии.
  • По Шаблон:Нп1 сфера является спектрально-жёсткой; то есть, многообразие с тем же спектром, что и у сферы, должно быть ей изометрично.

Примечания

Шаблон:Примечания

Шаблон:Нет источников

Литература

Ссылки