Отрицательное число

Материал из testwiki
Перейти к навигации Перейти к поиску
Шаблон:Center
Отрицательная этажность в лифте.

Отрица́тельное число́ — элемент множества отрицательных чисел, которое (вместе с нулём) появилось в математике при расширении множества натуральных чиселШаблон:Sfn. Основной целью расширения было желание сделать вычитание такой же полноценной операцией, как сложение. В рамках натуральных чисел можно вычесть только меньшее число из большего, а переместительный закон не включает вычитание — например, выражение 3+45 допустимо, а выражение с переставленными операндами 35+4 недопустимо.

Добавление к натуральным числам отрицательных чисел и нуля делает возможной операцию вычитания для любых пар натуральных чисел. В результате такого расширения получается множество (кольцо) «целых чисел». При дальнейших расширениях множества целых чисел до рациональных и вещественных чисел для них тем же путём получаются соответствующие отрицательные значения. Для комплексных чисел понятия «отрицательное число» не существует.

Построение отрицательных чисел

Шаблон:Center
Шаблон:Center

Шаблон:Center

Для каждого натурального числа n существует одно и только одно отрицательное число, обозначаемое n, которое дополняет n до нуля:

n+(n)=0.

Оба числа называются противоположными друг для друга. Далее натуральные числа будут называться «положительными», в противовес «отрицательным». Если n положительно, то противоположное ему отрицательно, и наоборот. Ноль противоположен самому себе[1]. Аналогично определяются положительные и отрицательные значения для рациональных и вещественных чисел: каждому положительному числу a сопоставляется отрицательное a.

Наглядное представление сложения положительных и отрицательных чисел. Бо́льшие кружки представляют собой числа с большей абсолютной величиной.

Для отрицательных чисел, как и для положительных, определена упорядоченность, позволяющая сравнивать одно число с другим. Все отрицательные числа, и только они, меньше, чем ноль, а также меньше, чем положительные числа. На числовой оси отрицательные числа располагаются слева от нуля.

Абсолютной величиной для числа a называется это число с отброшенным знакомШаблон:Sfn. Обозначение: |a|.

Примеры: |4|=4; |5|=5; |0|=0

Вычитание числа a' из другого числа b равносильно сложению b с противоположным для a:

ba=b+(a).

Пример: 2575=50.

О том, как выполнять арифметические операции с отрицательными числами, см. Целое число#Алгебраические свойства.

Свойства отрицательных чисел

Отрицательные числа подчиняются практически тем же алгебраическим правилам, что и натуральные, но имеют некоторые особенности.

  1. Если любое множество положительных чисел ограничено снизу, то любое множество отрицательных чисел ограничено сверху.
  2. При умножении целых чисел действует правило знаков: произведение чисел с разными знаками отрицательно, с одинаковыми — положительно.
  3. При умножении обеих частей неравенства на отрицательное число знак неравенства меняется на обратный. Например, умножая неравенство 3 < 5 на −2, мы получаем: −6 > −10.

При делении с остатком частное может иметь любой знак, но остаток, по соглашению, всегда неотрицателен (иначе он определяется не однозначно). Например, деление −24 на 5 с остатком допускает два представления:

24=5(5)+1; 24=5(4)4

Правильным является только первое из них, в котором остаток неотрицателен.

Вариации и обобщения

Понятия положительных и отрицательных чисел можно определить в любом упорядоченном кольце. Чаще всего эти понятия относятся к одной из следующих числовых систем:

Приведенные выше свойства 1-3 имеют место и в общем случае. К комплексным числам понятия «положительный» и «отрицательный» неприменимы.

Исторический очерк

Шаблон:См. также Древний Египет, Вавилон и Древняя Греция не использовали отрицательных чисел, а если получались отрицательные корни уравнений (при вычитании), они отвергались как невозможные. Исключение составлял Диофант, который в III веке уже знал правило знаков и умел умножать отрицательные числа. Однако он рассматривал их лишь как промежуточный этап, полезный для вычисления окончательного, положительного результата.

Впервые отрицательные числа были частично узаконены в классическом китайском трактате «Математика в девяти книгах» (II в до н. э.), а затем (примерно с VII века) и в Индии, где трактовались как долги (недостача), или, как у Диофанта (III в н. э.), признавались как временные значения. Умножение и деление для отрицательных чисел тогда ещё не были определены. Полезность и законность отрицательных чисел утверждались постепенно. Индийский математик Брахмагупта (VII век) уже рассматривал их наравне с положительными, он определил все четыре операции с отрицательными числами.

В исламский мир отрицательные числа пришли из индийских работ. В X веке, Абу Камил проиллюстрировал правила знаков для раскрытия скобок в произведении выражений вида (a±b)(c±d), а аль-Караджи в своей книге «Аль-Фахри» отметил, что «отрицательные величины должны учитываться как отдельные члены». Позже, Абу аль-Вафа аль-Бузджани в своём труде "Книга о том, что необходимо из науки арифметики для писцов и купцов" рассматривал долги как отрицательные числа[2]. В XII веке преемники аль-Караджи, такие как Самуил Марокканский, сформулировали общие правила работы с отрицательными числами и использовали их при делении многочленов[3]. Термины positivus и negativus (положительный и отрицательный) пришли в Европу из перевода книги «Мухаммедов трактат по арифметике» Аль-Кушчи.

В Европе признание наступило гораздо позже, да и то долгое время отрицательные числа называли «ложными», «мнимыми» или «абсурдными». Первое описание их в европейской литературе появилось в «Книге абака» Леонарда Пизанского (1202 год), который трактовал отрицательные числа как долг. Бомбелли и Жирар в своих трудах считали отрицательные числа вполне допустимыми и полезными, в частности, для обозначения нехватки чего-либо. Даже в XVII веке Паскаль считал, что 04=0, так как «ничто не может быть меньше, чем ничто»[4]. Отголоском тех времён является то обстоятельство, что в современной арифметике операция вычитания и знак отрицательных чисел обозначаются одним и тем же символом (минус), хотя алгебраически это совершенно разные понятия.

В XVII веке, с появлением аналитической геометрии, отрицательные числа получили наглядное геометрическое представление на числовой оси, благодаря введению в 1637 г. Рене Декартом прямоугольной системы координат. С этого момента наступает их полное равноправие. Тем не менее теория отрицательных чисел долго находилась в стадии становления. Оживлённо обсуждалась, например, странная пропорция 1:(1)=(1):1 — в ней первый член слева больше второго, а справа — наоборот, и получается, что большее равно меньшему («парадокс Арно»). Валлис считал, что отрицательные числа меньше нуля, но в то же время больше, чем бесконечностьШаблон:Sfn. Непонятно было также, какой смысл имеет умножение отрицательных чисел, и почему произведение отрицательных положительно; на эту тему проходили жаркие дискуссии. Гаусс в 1831 году считал нужным разъяснить, что отрицательные числа принципиально имеют те же права, что и положительные, а то, что они применимы не ко всем вещам, ничего не означает, потому что дроби тоже применимы не ко всем вещам (например, неприменимы при счёте людей)[5].

Полная и вполне строгая теория отрицательных чисел была создана только в XIX веке (Уильям Гамильтон и Герман Грассман).

Знаменитые отрицательные числа

Число Смысл числа Примечания
−273,15 °C Абсолютный нуль температуры Это ноль градусов по шкале Кельвина.
−1,602 176 565·10−19 Кл Заряд электрона Элементарный заряд может быть и положительным — у протонов и позитронов.
−2,7·10−9 Константа де Брёйна — Ньюмана Числовое значение — по сведениям 2000 года.

См. также

Примечания

Шаблон:Примечания

Литература

Шаблон:ВС

  1. Ошибка цитирования Неверный тег <ref>; для сносок VYG111 не указан текст
  2. Шаблон:Citation
  3. Шаблон:Cite book
  4. Сухотин А. К. Превратности научных идей. М.: Мол. гвардия. 1991, стр. 34.
  5. Александрова Н. В. Математические термины.(справочник). М.: Высшая школа, 1978, стр. 164.