Электрический импеданс

Материал из testwiki
Перейти к навигации Перейти к поиску

Шаблон:Другие значения термина Шаблон:Электродинамика Электри́ческий импеда́нс (ко́мплексное электри́ческое сопротивле́ние[1][2]) (Шаблон:Lang-en от Шаблон:Lang-la «препятствовать») — комплексное сопротивление между двумя узлами цепи или двухполюсника для гармонического сигнала.

Понятие и термин ввёл физик и математик О. Хевисайд в 1886 году[3][4].

Аналогия с электрическим сопротивлением проводника на примере резистора

Шаблон:См. также Резистор — пассивный элемент, обладающий исключительно активным сопротивлением. Реактивная составляющая комплексного сопротивления резистора равна нулю, так как соотношение между напряжением на резисторе и током через него не зависит от частоты тока/напряжения, а также из-за того, что резистор является пассивным элементом (поскольку не содержит внутренних источников энергии). Если к его концам приложить некоторое напряжение U (подсоединить источник напряжения), то через резистор пойдёт электрический ток I. Если через резистор пропустить электрический ток I (подсоединить источник тока), то между концами резистора возникнет падение напряжения U. Резистор характеризуется электрическим сопротивлением, которое равно отношению напряжения U, к току I (см. закон Ома для участка цепи):

R=UI.

Применение понятия «электрическое сопротивление» к реактивным элементам (катушка индуктивности и конденсатор) при постоянном токе приводит к тому, что:

  • сопротивление идеальной катушки индуктивности стремится к нулю:
если пропустить через идеальную катушку индуктивности некоторый постоянный ток I, то при любом значении I, падение напряжения на катушке будет нулевым:
U=0;
R=UI=0I=0;
если приложить к конденсатору некоторое постоянное напряжение U, то при любом значении U, ток через конденсатор будет нулевым:
I=0;
R=UI=U0=.

Это справедливо лишь для постоянного тока и напряжения. В случае же приложения к реактивному элементу переменного тока и напряжения, свойства реактивных элементов существенно иные:

  • напряжение между выводами катушки индуктивности не равно нулю;
  • ток, протекающий через конденсатор, не будет равен нулю.

Такое поведение не может быть описано в терминах активного сопротивления для постоянного тока, поскольку активное сопротивление предполагает постоянное, не зависящее от времени соотношение тока и напряжения, то есть отсутствие фазовых сдвигов между током и напряжением.

Было бы удобно иметь некоторый параметр, аналогичный активному сопротивлению и для реактивных элементов, который бы связывал ток и напряжение на них подобно активному сопротивлению в формуле закона Ома для постоянного тока.

Такую характеристику можно ввести, если рассмотреть свойства реактивных элементов при воздействиях на них гармонических сигналов. В этом случае ток и напряжение оказываются связаны некой константой (подобной в некотором смысле активному сопротивлению), которая и получила название «электрический импеданс» (или просто «импеданс»). При рассмотрении импеданса используется комплексное представление гармонических сигналов, поскольку именно в таком представлении одновременно учитываются и амплитудные, и фазовые характеристики гармонических сигналов и откликов систем на гармоническое воздействие.

Определение

Импедансом z^(jω) называется отношение комплексной амплитуды напряжения гармонического сигнала, прикладываемого к двухполюснику, к комплексной амплитуде тока, протекающего через двухполюсник в установившемся режиме, то есть после завершения переходных процессов. Для линейных пассивных цепей с постоянными параметрами в установившемся режиме импеданс не зависит от времени. Если время t в математическом выражении для импеданса не сокращается, значит, для данного двухполюсника понятие импеданса неприменимо.

Шаблон:EF

где j — мнимая единица[5];

ω — циклическая (круговая) частота;
U(ω),I(ω) — амплитуды напряжения и тока гармонического сигнала на частоте ω;
ϕu(ω),ϕi(ω) — фазы напряжения и тока гармонического сигнала на частоте ω;
U^(jω),I^(jω) — комплексные амплитуды напряжения и тока гармонического сигнала на частоте ω.

Исторически сложилось, что в электротехнике обозначение импеданса, комплексных амплитуд и других комплексных функций частоты записывают как f(jω), а не f(ω). Такое обозначение подчёркивает, что используются комплексные представления гармонических функций вида ejωt. Кроме того, над символом, обозначающим комплексный сигнал или комплексный импеданс, обычно ставят «домик» или точку: U˙(jω) чтобы отличать от соответствующих действительных величин.

Физический смысл

Алгебраическая форма

Если рассматривать комплексный импеданс как комплексное число в алгебраической форме, то действительная часть соответствует активному сопротивлению, а мнимая — реактивному. То есть двухполюсник с импедансом z^(jω) можно рассматривать как последовательно соединенные резистор с сопротивлением (z^(jω)) и чисто реактивный элемент с импедансом (z^(jω)).

Рассмотрение действительной части полезно при расчёте мощности, выделяемой в двухполюснике, поскольку мощность выделяется только на активном сопротивлении.

Тригонометрическая форма

Пример графического представление импеданса на комплексной плоскости

Если рассматривать импеданс как комплексное число в тригонометрической форме, то модуль соответствует отношению амплитуд напряжения и тока (сдвиг фаз не учитывается), а аргумент — сдвигу фазы между током и напряжением, то есть на сколько фаза тока отстаёт от фазы напряжения или опережает.

Ограничения

Понятие импеданса в классической форме применимо, если при приложении к двухполюснику гармонического напряжения, ток, вызванный этим напряжением, также гармонический той же частоты. Для этого необходимо и достаточно, чтобы двухполюсник был линейным и его параметры не менялись со временем и закончились переходные процессы. Если это условие не выполнено, то импеданс не может быть найден по следующей причине: невозможно получить выражение для импеданса, не зависящее от времени t, поскольку при вычислении импеданса множитель ejωt в (1) не сокращается.

  • Однако и для линейных двухполюсников (для которых зависимость от времени сокращается) импеданс всё же зависит от частоты (за исключением случая когда двухполюсник сводится к схеме из одних резисторов и импеданс оказывается действительной величиной).

Практически это означает, что импеданс может быть вычислен для любого двухполюсника, состоящего из резисторов, катушек индуктивности и конденсаторов, то есть из линейных пассивных элементов. Также импеданс хорошо применим для активных цепей, линейных в широком диапазоне входных сигналов (например, цепи на основе операционных усилителей). Для цепей, импеданс которых не может быть найден в силу указанного выше ограничения, бывает полезным найти импеданс в малосигнальном приближении — для бесконечно малой амплитуды сигнала для конкретной рабочей точки. Для этого необходимо перейти к эквивалентной схеме и искать импеданс для неё.

Обобщённый импеданс в s-плоскости и преобразование Лапласа

Импедансы, определённые через комплексную частоту jω, позволяют вычислять частотный отклик некоторой линейной цепи, возбуждаемой гармоническим сигналом, причём только в установившемся режиме. Для расчёта отклика цепи на сигнал, произвольно изменяющийся во времени применяется обобщённый импеданс — функции комплексной переменной s=σ+jω и отклик цепи во временно́й области вычисляется через обратное преобразование Лапласа, причём в таких вычислениях возбуждающий сигнал fin(t) из временного представления должен быть предварительно преобразован в комплексное представление Ft(s) через прямое преобразование Лапласа:

Ft(s)=0fin(t)estdt.

Комплексный отклик системы выражается обычным способом через преобразованное комплексное представление возбуждающего сигнала и комплексную передаточную функцию системы H(s):

Ft,H(s)=H(s) Ft(s).
Двухполюсник Обобщённый
импеданс
Резистор R
Катушка
индуктивности
sL
Конденсатор 1sC

Комплексная передаточная функция вычисляется обычным методом расчёта электрических цепей, например, по правилам Кирхгофа, в формулы в качестве сопротивлений подставляются обобщённые импедансы. Обобщённые импедансы пассивных двухполюсников приведены в таблице. Например, обобщённый импеданс цепи, состоящей из последовательно включённых резистора и катушки индуктивности будет R+sL.

Отклик цепи во временно́й области вычисляется обратным преобразованием Лапласа:

fF,H(t)=1[H(s) Ft(s)]=12πjσ1jσ1+jestH(s) Ft(s)ds,
где σ1  — некоторое вещественное число, выбираемое из условий сходимости интеграла.
Пример вычисления временно́го отклика RC-фильтра нижних частот на ступенчатое возмущение
Пассивный RС-фильтр нижних частот 1-го порядка

Простейший фильтр нижних частот 1-го порядка изображён на рисунке и состоит из последовательно соединённых резистора и конденсатора, образующего делитель напряжения для входного сигнала где выходной сигнал снимается с конденсатора, обобщённый комплексный коэффициент передачи HRC(s) такого делителя:

HRC(s)=1/sCR+1/sC=1sRC+1=1sT+1,
где обозначено T=RC — постоянная времени RС-цепи.

Ступенчатый входной сигнал Ue(t) можно выразить через функцию Хевисайда h(t):

Ue(t)=U0 h(t),
где U0 — амплитуда ступеньки.

Преобразование Лапласа входного сигнала:

Fin(s)=[U0 h(t)]=0estU0h(t)dt=U0/s.

Выходной сигнал Ua(t):

Ua(t)=1[HRC(s) Fin(s)]=12πjσ1jσ1+jest1sT+1U0sds=U0(1et/T).

Таким образом, получен отклик цепи при нулевом начальном условии (UC=0 при t=0), такой же, как и при применении другого метода расчёта, например, из решения обыкновенного дифференциального уравнения.

Для практического применения расчёта цепей (и других расчётов) составлены подробные таблицы прямого и обратного преобразования Лапласа многих часто встречающихся при расчётах функций.

Комбинируя преобразование Лапласа с использованием его свойств и интеграл Дюамеля обычно относительно легко найти отклики во временной области самых различных линейных электрических цепей.

Вычисление импеданса

Идеальные элементы

Для резистора импеданс всегда равен его сопротивлению R и не зависит от частоты:

Шаблон:EF

Конденсатор

Ток и напряжение для конденсатора связаны соотношением:

Шаблон:EF

Отсюда следует, что при напряжении

Шаблон:EF

ток, текущий через конденсатор, будет равен:

Шаблон:EF

После подстановки (4) и (5) в (1) получаем:

Шаблон:EF

Аналогичное рассмотрение для катушки индуктивности приводит к результату:

Шаблон:EF

Общий случай

Для произвольного двухполюсника, состоящего из элементов с известным импедансом, нет необходимости производить приведённые выше вычисления с целью нахождения импеданса. Импеданс находится по обычным правилам расчёта сопротивления сложной цепи, то есть используются формулы для сопротивления при параллельном и последовательном соединении резисторов. При этом все математические операции производятся по правилам действий над комплексными числами. Например, импеданс идеальных последовательно соединённых резистора, конденсатора и катушки индуктивности будет равен:

Шаблон:EF

Экспериментальное измерение импеданса

Прямое измерение импеданса требует измерения амплитуд синусоидальных напряжения и тока изучаемого двухполюсника, и одновременного измерения сдвига фазы между ними.

Импеданс также часто измеряют компенсационными методами с помощью мостов переменного тока, подобными мосту Уитстона для постоянного тока, при таких измерениях мост балансируют изменением эталонных реактивного и активного элементов, по величине реактивного и активного сопротивления эталонных элементов, требуемого для балансировки моста, определяется измеряемый импеданс.

В силовых устройствах измерение импеданса может потребовать одновременного измерения и подачи питания на работающее устройство.

Измерение импеданса устройств и линий передач является практической задачей в радиотехнике и других областях.

Измерения импеданса обычно проводятся на одной частоте, но если требуется определить зависимость импеданса от частоты, то измерения проводят на нескольких частотах в нужном диапазоне частот.

Активная и реактивная составляющие импеданса обычно выражают в омах. Однако, для характеризации антенн, линиях передачи, СВЧ электронных устройств обычно более удобно использовать связанные с ним S-параметры, коэффициент стоячей волны или коэффициент отражения.

Сопротивление устройства можно рассчитать путём деления комплексных напряжения и тока. Полное сопротивление устройства рассчитывается путём подачи синусоидального напряжения на устройство последовательно с эталонным резистором и измерения напряжений на резисторе и на самом устройстве. Выполнение этого измерения на нескольких частотах тестирующего сигнала обеспечивает определение фазового сдвига и величины импеданса[6].

Измерение отклика исследуемой цепи на импульсный тестирующий сигнал можно использовать в сочетании с быстрым преобразованием Фурье для измерения импеданса различных электрических устройств[6].

LCR-измеритель (индуктивность L, ёмкость C и сопротивление R) или измеритель иммитанса — это устройство, обычно используемое для измерения индуктивности, сопротивления и ёмкости компонента. Из этих значений можно рассчитать полное сопротивление на любой частоте.

Применение понятия импеданса

Введение импеданса позволяет описывать поведение двухполюсника с реактивными свойствами при воздействии на него гармонического сигнала. Кроме того, в случае негармонического сигнала импеданс применяется столь же успешно. Для этого применяется преобразование Лапласа, либо сигнал раскладывается на спектральные компоненты при помощи ряда Фурье (или преобразования Фурье) и рассматривается воздействие каждой спектральной компоненты. Вследствие линейности двухполюсника сумма откликов на спектральные компоненты равна отклику на исходный негармонический сигнал .

См. также

Примечания

Шаблон:Примечания

Литература

Шаблон:Внешние ссылки

  1. Шаблон:Cite web
  2. Шаблон:Cite web
  3. Science, p. 18, 1888
  4. Oliver Heaviside. The Electrician. P. 212; 23 July 1886 reprinted as Electrical Papers, p64, AMS Bookstore, ISBN 0-8218-3465-7
  5. В электротехнике и электронике мнимую единицу принято обозначать символом j, во избежание путаницы с символом i, традиционно применяемым для обозначения силы тока.
  6. 6,0 6,1 Шаблон:Статья