Метод обратной задачи рассеяния
Ме́тод обра́тной зада́чи рассе́яния — аналитический метод решения задачи Коши для нелинейных эволюционных уравнений. Основан на связи нелинейного уравнения с данными рассеяния семейства вспомогательных линейных дифференциальных операторов, дающей возможность по эволюции данных рассеяния восстановить эволюцию решения нелинейного уравнения.
Метод представляет собой аналог метода Фурье решения линейных дифференциальных уравнений в частных производных. Роль преобразования Фурье при этом играет отображение коэффициентных функций линейного дифференциального оператора в совокупность данных рассеянияШаблон:Sfn. При применении метода необходимо решать обратную задачу рассеяния, которая состоит в восстановлении линейного дифференциального оператора по его данным рассеяния.
В основе метода лежит представление исследуемого нелинейного уравнения в виде условия совместности системы линейных уравнений, называемое представлением ЛаксаШаблон:Sfn.
Для интегрируемых методом обратной задачи уравнений характерно существование специальных точных решений — солитонов («уединённых волн»).
История

Метод обратной задачи рассеяния берет начало в 1967 году в работе К. С. Гарднера, Дж. М. Грина, М. Д. Крускала и Р. М. Миуры, применивших его к уравнению Кортевега — де Фриза (КдФ)[1]. Это уравнение было выведено в конце XIX века для описания волн на мелкой воде. Тогда же были получены некоторые его точные решения — солитоны. Интерес к солитонам возобновился в связи с исследованиями по физике плазмы в 60-х годах XX века. В 1965 году М. Д. Крускал и Н. Забужский обнаружили путём численного моделирования, что солитоны уравнения Кортевега — де Фриза сталкиваются упруго (эффект, совершенно не характерный для линейных волн)[2]. Этот результат дал толчок к новым аналитическим исследованиям, которые в результате привели к возникновению метода обратной задачи.
Дальнейшее развитие метод получил в работе П. Лакса, который вскрыл лежащий в основе алгебраический механизм[3]. Позднее К. С. Гарднер, В. Е. Захаров и Л. Д. Фаддеев построили теорию уравнения Кортевега — де Фриза как гамильтоновой системы.
В 1971 году В. Е. Захаров и А. Б. Шабат применили метод обратной задачи к другому важному для физики уравнению — нелинейному уравнению Шрёдингера[4]. Вскоре М. Вадати, используя идеи прямой и обратной задачи рассеяния, предложил решение модифицированного уравнения Кортевега — де Фриза (мКдФ), а М. Абловиц, Д. Кауп, А. Ньюэлл и Х. Сигур проделали то же самое для уравнения синус-Гордона[5]. Затем М. Абловиц, Д. Кауп, А. Ньюэлл и Х. Сигур предложили схему, позволяющую по заданной задаче рассеяния построить иерархию нелинейных эволюционных уравнений, решаемых методом обратной задачи[6].
В дальнейшем при помощи метода обратной задачи рассеяния было построено решение для разностного аналога уравнения Кортевега — де Фриза — цепочки Тоды, изучены периодические и почти периодические решения уравнения Кортевега — де Фриза (до этого речь шла о решениях, быстро убывающих на бесконечности), получены решения других нелинейных уравненийШаблон:SfnШаблон:Sfn.
Описание метода на примере уравнения Кортевега — де Фриза
Связь с оператором Штурма — Лиувилля
Уравнение Кортевега — де Фриза
является условием совместности переопределённой системы линейных уравнений:
где
— оператор Штурма — Лиувилля,
и эквивалентно следующему операторному соотношению, называемому представлением Лакса:
Прямая задача рассеяния
Спектр оператора Штурма — Лиувилля (оператора Шрёдингера)
с потенциалом , достаточно быстро убывающим при , состоит из двух компонент: непрерывной, включающей положительную полуось , и конечного числа отрицательных дискретных собственных значений . Для характеристики непрерывной части спектра вводится решение уравнения , определяемое асимптотическими граничными условиями
Данные условия однозначно определяют решение , а также коэффициенты прохождения и отражения . Собственным значениям отвечают собственные функции и нормировочные константы
Данными рассеяния оператора называется набор величин:
Прямая задача рассеяния заключается в определении данных рассеяния по заданному потенциалу Шаблон:Sfn.
Обратная задача рассеяния
Обратная задача рассеяния состоит в восстановлении оператора (а именно, его потенциала ) по данным рассеяния. Один из основных методов решения обратной задачи рассеяния основан на уравнении Гельфанда — Левитана — Марченко:
Это интегральное уравнение Фредгольма второго рода относительно функции (при каждом фиксированном ). Оно связывает функцию , которая строится по данным рассеяния:
с функцией , по которой можно найти потенциал:
Эволюция данных рассеяния
Если функция меняется во времени как решение уравнения Кортевега — де Фриза, то эволюция данных рассеяния во времени имеет вид
Верно и обратноеШаблон:Sfn.
Схема метода

Решение задачи Коши для уравнения Кортевега — де Фриза методом обратной задачи рассеяния разбивается на три этапа:
- Решить прямую задачу рассеяния: по заданному начальному условию найти данные рассеяния .
- По найти , используя формулы для эволюции данных рассеяния.
- Решить обратную задачу рассеяния: по данным рассеяния восстановить функцию — искомое решение задачи Коши.
Стоит отметить, что все этапы схемы связаны с изучением линейных задачШаблон:Sfn.
Солитоны
Прямая и обратная задачи рассеяния решаются точно для безотражательных потенциалов, для которых коэффициент отражения тождественно равен нулю. В этом случае решение обратной задачи имеет вид
где — матрица с элементами
(здесь — символ Кронекера). Свойство безотражательности сохраняется по времени. Временная динамика безотражательных потенциалов получается заменой
в определении матрицы . Простейший безотражательный потенциал с одним дискретным уровнем называется солитоном и имеет вид
где введено обозначение
Интегрируемые уравнения
- Уравнение Кортевега — де Фриза
- Нелинейное уравнение Шрёдингера
- Уравнение синус-Гордона
- Цепочка Тоды
- Модифицированное уравнение Кортевега — де Фриза
- Уравнение Кадомцева — Петвиашвили
- Уравнение Ишимори