Ряд из натуральных чисел
Шаблон:К переименованию Шаблон:О

Ряд из натуральных чисел — числовой ряд (бесконечная сумма элементов), членами которого являются последовательные натуральные числа: ; при этом Шаблон:Mvar-я частичная сумма ряда является треугольным числом:
которое неограниченно растёт при стремлении к бесконечности. Из-за того, что последовательность частичных сумм ряда не имеет конечного предела, ряд расходится, то есть не имеет конечной суммы.
Из-за расходимости ряд не имеет никакой значимой ценности для традиционных математических подходов. Но при некотором уровне манипулирования можно получить нетривиальные результаты, находящие применение в комплексном анализе, квантовой теории поляШаблон:Нет АИ и теории струн[1].
Специальные методы суммирования
В математике существуют методы суммирования, которые позволяют присвоить определённые числовые значения (конечные) даже расходящимся рядам. Одним из таких способов является метод, основанный на регуляризации аналитического продолжения дзета-функции Римана. Другим популярным вариантом является Шаблон:Не переведено[2]. Многие из подобных методов присваивают ряду одинаковое значение в виде отрицательной дроби:
Частичные суммы

Частичными суммами натурального ряда являются 1, 3, 6, 10, 15 и т. д. Таким образом, Шаблон:Mvar-я частичная сумма выражается формулой
Это выражение было известно ещё Пифагору в VI веке до нашей эры[3]. Числа такого вида называются треугольными, так как они могут быть представлены в виде треугольника.
Бесконечная последовательность треугольных чисел стремится к и, следовательно, бесконечная сумма натурального ряда также стремится к . Такой результат является следствием невыполнения необходимого условия сходимости числового ряда.
Суммируемость
В сравнении с другими классическими расходящимися рядами, натуральному ряду сложнее приписать имеющее смысл некоторое конечное числовое значение. Существует множество методов суммирования, некоторые из которых являются более устойчивыми и мощными. Так, например, суммирование по Чезаро является широко известным методом, который суммирует умеренно расходящийся ряд Гранди Шаблон:Nowrap и приписывает ему конечное значение 1/2. Суммирование методом Абеля представляет собой более мощный метод, который, кроме ряда Гранди, позволяет также суммировать более сложный знакочередующийся ряд натуральных чисел и присвоить ему значение 1/4.
В отличие от упомянутых выше рядов, как суммирование по Чезаро, так и метод Абеля неприменимы к натуральному ряду. Эти методы работают только со сходящимися и гармоническими рядами и не могут быть использованы для ряда, частичные суммы которого стремятся к Шаблон:Math[4]. Большинство элементарных определений суммы расходящегося ряда являются линейными и устойчивыми, а любой линейный и устойчивый метод не может присвоить натуральному ряду конечное значение.
Следовательно, для этого случая возможно применение только специальных методов, таких как регуляризация дзета-функцией или суммирование Рамануджана.
Эвристические предпосылки

В главе 8 первого сборника своих трудов Рамануджан показал, что «1 + 2 + 3 + 4 + … = −1/12», используя два способа[5][6][7]. Ниже излагается более простой метод, состоящий из двух этапов.
Первое ключевое наблюдение состоит в том, что ряд Шаблон:Nowrap похож на знакочередующийся ряд натуральных чисел Шаблон:Nowrap. Несмотря на то, что этот ряд также является расходящимся, с ним намного проще работать. Существует несколько классических способов присвоить конечное значение этому ряду, известных ещё с XVIII века.[8]
Для того, чтобы привести ряд Шаблон:Nowrap к виду Шаблон:Nowrap, мы можем вычесть 4 из второго члена, 8 из четвёртого члена, 12 из шестого и т. д. Общая величина, которую нужно вычесть, выражается рядом Шаблон:Nowrap, который получается умножением исходного ряда Шаблон:Nowrap на 4. Эти выражения можно записать в алгебраической форме. Что бы из себя ни представляла «сумма», введём для неё обозначение Шаблон:Nowrap, умножим полученное уравнение на 4 и вычтем второе из первого:
Второе ключевое наблюдение заключается в том, что ряд Шаблон:Nowrap является разложением в степенной ряд функции 1/(1 + Шаблон:Mvar)2 при Шаблон:Mvar, равном 1. Соответственно, Рамануджан заключает:
Поделив обе части на −3, получаем Шаблон:Mvar = −1/12.
Строго говоря, существует неоднозначность при работе с бесконечными рядами в случае использования методов, предназначенных для конечных сумм (наподобие тех методов, что были использованы выше), в особенности если эти бесконечные ряды расходятся. Неоднозначность заключается в том, что если вставить ноль в любое место в расходящемся ряде, существует вероятность получить противоречивый результат. Например, действие Шаблон:Nowrap противоречит свойствам сложения.
Одним из способов обойти эту неопределённость и тем самым ограничить позиции, куда можно вставить ноль, является присвоение каждому члену ряда значения некоторой функции.[9] Для ряда Шаблон:Nowrap, каждый член Шаблон:Mvar представляет собой натуральное число, которое может быть представлено в виде функции Шаблон:Math, где Шаблон:Mvar — некоторая комплексная переменная. Используя такое представление, можно гарантировать, что все члены ряда последовательны. Таким образом, присвоив Шаблон:Mvar значение −1, можно выразить рассматриваемый ряд в строгом виде. Реализация этого способа носит название регуляризации дзета-функцией.
Исследования Леонарда Эйлера над расходящимися рядами
В De seriebus divergentibus Эйлер упоминает ряд 1 + 2 + 3 + 4 + … наряду с расходящимся геометрическим рядом 1 + 2 + 4 + 8 + …. Он намекает, что ряды этого типа могут иметь конечные, отрицательные суммы в специальном смысле, и объясняет, что это значит для геометрических рядов, но не возвращается к детальному обсуждению 1 + 2 + 3 + 4 + ….
Современная интерпретация, связывающая 1 + 2 + 3 + 4 + … с −1/12, основана на аналитическом продолжении зет-функции, где ζ(−1) = −1/12. Однако Эйлер, по-видимому, не использовал этот результат явно, сосредоточившись на других методах, таких как разложения функций и геометрические интерпретации. Его утверждение о «конечных, отрицательных суммах» для некоторых расходящихся рядов указывает на попытки интерпретировать такие объекты в нетрадиционном контексте, что стало важным шагом к развитию современной теории рядов и функций.
Регуляризация дзета-функцией

В этом методе, ряд заменяется рядом . Последний ряд является частным случаем ряда Дирихле. Если действительная часть s больше 1, ряд Дирихле сходится, и его сумма представляет собой дзета-функцию Римана ζ(s). С другой стороны, если действительная часть s меньше или равна 1, ряд Дирихле расходится. В частности, ряд Шаблон:Nowrap, который получается подстановкой s = −1, не является сходящимся. Преимущества перехода к дзета-функции Римана заключается в том, что, используя метод аналитического продолжения, она может быть определена для s ⩽ 1. Следовательно, мы можем получить значение регуляризованной дзета-функции ζ(−1) = −1/12.
Существует несколько способов доказать, что Шаблон:Nowrap Один из методов[10] использует связь между дзета-функцией Римана и Шаблон:Не переведено η(s). Эта-функция выражается знакопеременным рядом Дирихле, согласуясь тем самым с ранее представленными эвристическими предпосылками. Тогда как оба ряда Дирихле сходятся, следующие тождества верны:
Тождество остаётся справедливым если мы продолжим обе функции аналитически в область значений s, где вышезаписанные ряды расходятся. Подставляя Шаблон:Nowrap, получим Шаблон:Nowrap Отметим, что вычисление η(−1) является более простой задачей, так как значение эта-функции выражается значением суммы Абеля соответствующего ряда[11] и представляет собой односторонний предел:
Поделив обе части выражения на −3, получаем Шаблон:Nowrap
Суммирование методом Рамануджана
Суммирование ряда Шаблон:Nowrap методом Рамануджана также позволяет получить значение −1/12. В своём втором письме к Х. Г. Харди, датированном 27 февраля 1913, Рамануджан пишет[12]:
- Уважаемый Сэр, я с большим удовольствием прочёл ваше письмо от 8 февраля 1913 года. Я ожидал, что вы ответите мне в том же стиле, что и профессор математики из Лондона, который посоветовал мне внимательно изучить «Бесконечные ряды» Томаса Бромвича и не попадать в ловушку, которую таят расходящиеся ряды. … Я ответил ему, что, согласно моей теории, сумма бесконечного числа членов ряда Шаблон:Nowrap. Узнав это, вы сию же минуту укажете в направлении психиатрической лечебницы. Уверяю, вы не сможете проследить нить рассуждений в моём доказательстве этого факта, если я попытаюсь изложить их в единственном письме.
Метод суммирования Рамануджана заключается в изолировании постоянного члена в формуле Эйлера — Маклорена для частичных сумм ряда. Для некоторой функции f, классическая сумма Рамануджана для ряда определена как
где f(2k−1) представляет собой (2k−1)-ю производную функции f и B2k является 2k-м числом Бернулли: Шаблон:Nowrap, Шаблон:Nowrap и т. д. Принимая Шаблон:Nowrap, первая производная f равна 1, а все остальные члены стремятся к нулю, поэтому:[13]
Для избежания противоречий современная теория метода суммирования Рамануджана требует, чтобы функция f являлась «регулярной» в том смысле, что её производные высших порядков убывают достаточно быстро для того, чтобы оставшиеся члены в формуле Эйлера — Маклорена стремились к 0. Рамануджан неявно подразумевал это свойство.[13] Требование регулярности помогает избежать использования метода суммирования Рамануджана для рядов типа 0 + 2 + 0 + 4 + … потому, что не существует регулярной функции, которая выражалась бы значениями такого ряда. Такой ряд должен интерпретироваться с использованием регуляризации дзета-функцией.
Несостоятельность устойчивых линейных методов суммирования
Линейный и устойчивый метод суммирования не в состоянии присвоить конечное значение ряду 1 + 2 + 3 + … (Устойчивый означает, что добавление члена в начало ряда увеличивает сумму ряда на величину этого члена.) Это утверждение может быть продемонстрировано следующим образом. Если
- 1 + 2 + 3 + … = x,
тогда, добавляя 0 к обеим частям, получаем
- 0 + 1 + 2 + … = 0 + x = x,
исходя из свойства устойчивости. Вычитая нижний ряд из верхнего, получаем
- 1 + 1 + 1 + … = x − x = 0,
исходя из свойства линейности. Добавляя 0 к обеим частям повторно, получаем
- 0 + 1 + 1 + 1 + … = 0
и вычитая два последних ряда, приходим к
- 1 + 0 + 0 + … = 0,
что противоречит свойству устойчивости.
Методы, использованные выше, для суммирования 1 + 2 + 3 + … являются либо только устойчивыми, либо только линейными. Например, существует два разных метода, называемых регуляризацией дзета-функцией. Первый является устойчивым, но нелинейным и определяет сумму a + b + c + … множества чисел как значение аналитического продолжения выражения 1/as + 1/bs + 1/cs + при s = −1. Второй метод линейный, но неустойчивый и определяет сумму последовательности чисел как значение аналитического продолжения выражения a/1s + b/2s + c/3s при s = 0. Оба метода присваивают ряду 1 + 2 + 3 + … значение суммы ζ(−1) = −1/12.
Применение в физике
Значение −1/12 встречается в теории бозонных струн при попытке рассчитать возможные энергетические уровни струны, а именно низший энергетический уровень[1].
Регуляризация ряда 1 + 2 + 3 + 4 + … также встречается при расчёте эффекта Казимира для скалярного поля в одномерном пространстве.[14] Похожие вычисления возникают для трёхмерного пространства, однако в этом случае вместо дзета-функции Римана используются реальныеШаблон:Уточнить аналитические ряды Эйзенштейна.[15]
Примечания
Список литературы
Ссылки
- This Week’s Finds in Mathematical Physics (Week 124), (Week 126), (Week 147), (Week 213)
- The Euler-Maclaurin formula, Bernoulli numbers, the zeta function, and real-variable analytic continuation by Terence Tao
- A recursive evaluation of zeta of negative integers by Luboš Motl
- ASTOUNDING: 1 + 2 + 3 + 4 + 5 + … = −1/12 Numberphile video with over a million views
- Sum of Natural Numbers (second proof and extra footage) includes demonstration of Euler’s method.
- What do we get if we sum all the natural numbers? response to comments about video by Tony Padilla
- Related article from New York TImes
- Divergent Series: why 1 + 2 + 3 + · · · = −1/12 by Brydon Cais from University of Arizona
Шаблон:Последовательности и ряды
- ↑ 1,0 1,1 Шаблон:Книга
- ↑ Шаблон:Citation
- ↑ Шаблон:Citation
- ↑ Hardy p. 10.
- ↑ Шаблон:Citation
- ↑ Шаблон:Citation
- ↑ Шаблон:Citation
- ↑ Шаблон:Cite web Originally published as Шаблон:Статья
- ↑ Присвоение номеров функциям идентифицируется как один из двух широких классов методов суммирования, включая суммирование Абеля и суммирование Бореля: Шаблон:Книга
- ↑ Шаблон:Citation
- ↑ Шаблон:Книга
- ↑ Berndt et al. p. 53 Шаблон:Wayback.
- ↑ 13,0 13,1 Шаблон:Citation.
- ↑ Zee, p. 65-67.
- ↑ Шаблон:Citation.