Обобщённая тригонометрия

Материал из testwiki
Версия от 04:45, 12 июля 2024; imported>InternetArchiveBot (Спасено источников — 3, отмечено мёртвыми — 0. Сообщить об ошибке. См. FAQ.) #IABot (v2.0.9.5)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Обобщённая тригонометрия — совокупность различных обобщений определений и результатов классической тригонометрии.

Обычная тригонометрия изучает треугольники в евклидовой плоскости 2. Существует несколько способов определения обычных тригонометрических функций евклидовой геометрии в вещественных числах: через прямоугольный треугольник, единичную окружность, ряды, дифференциальные и функциональные уравнения. Разработка обобщений тригонометрических функций часто заключается в адаптации одного из вышеперечисленных методов к ситуации, в которой не используются вещественные числа евклидовой геометрии. В общем случае тригонометрию можно рассматривать как изучение троек точек в любой геометрии и любом пространстве. Треугольник — это многоугольник с наименьшим числом вершин, поэтому одним из направлений для обобщения является изучение многомерных аналогов углов и многоугольников: телесный угол и многогранники, такие как тетраэдры и n-симплексы.

Тригонометрия

Более высокие размерности

Тригонометрические функции

Другое

См. также

Примечания

Шаблон:Примечания

Шаблон:Rq Шаблон:Тригонометрия