Многообразие

Материал из testwiki
Версия от 22:40, 5 января 2025; imported>Sldst-bot (В шаблон 'проще' добавлена дата установки шаблона: 2022-02-22)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Шаблон:Проще Шаблон:Другие значения Многообра́зие (топологическое многообразие) — локально евклидово пространство.

Евклидово пространство является самым простым примером многообразия. Более сложным примером может служить поверхность Земли: возможно сделать карту какой-либо области земной поверхности, например, карту полушария, но невозможно составить единую (плоскую и без разрывов) карту всей её поверхности.

Исследования многообразий были начаты во второй половине XIX века, они естественно возникли при изучении дифференциальной геометрии и теории групп Ли. Тем не менее первые точные определения были сделаны только в 30-х годах XX века.

Обычно рассматриваются так называемые гладкие многообразия, то есть те, на которых есть выделенный класс гладких функций — в таких многообразиях можно говорить о касательных векторах и касательных пространствах. Для того чтобы измерять длины кривых и углы, нужна ещё дополнительная структура — риманова метрика.

В классической механике основным многообразием является фазовое пространство. В общей теории относительности четырёхмерное псевдориманово многообразие используется как модель для пространства-времени.

Определения

Шаблон:Нет источников в разделе n-мерное топологическое многообразие без края — это хаусдорфово топологическое пространство со счётной базой, в котором каждая точка имеет открытую окрестность, гомеоморфную открытому подмножеству n, то есть n-мерному евклидову пространству.

n-мерное топологическое многообразиеШаблон:Уточнить — это хаусдорфово топологическое пространство со счётной базой, в котором каждая точка имеет окрестность, гомеоморфную открытому подмножеству замкнутого полупространства в n (считаем открытыми также объединения открытых подмножеств с пересечением их границы и граничной гиперплоскости).

  • Точки, которые имеют открытую окрестность, гомеоморфную открытому подмножеству n, называются внутренними, а множество всех таких точек — внутренность многообразия (это всегда непустое множество).

Шаблон:Якорь

  • Дополнение к внутренности называется краем, это — (n1)-мерное многообразие без края.

Особенности определения

  • Условие счётности базы эквивалентно тому, что многообразие вкладывается в евклидово пространство конечной размерности (то, что такое вложение существует, подтверждает теорема Уитни о вложении).
  • Иногда вместо условия счётности базы используется более слабое условие паракомпактности пространства[1].
  • Введённое здесь понятие края вовсе не равносильно понятию относительной границы в общей топологии.
  • Требование хаусдорфовости может показаться излишним; пример пространства, которое локально гомеоморфно евклидовому, но при этом не хаусдорфово, можно построить склеиванием двух копий вещественной прямой по всем точкам, кроме одной.

Гладкие многообразия

Шаблон:Главная Гладкая структура, определённая ниже, обычно возникает в почти всех приложениях и при этом делает многообразие гораздо удобней в работе.

Для топологического многообразия M без границы картой называется гомеоморфизм φ из открытого множества UM на открытое подмножество n. Набор карт, покрывающих всё M, называется атласом.

Если две карты φ и ψ накрывают одну точку в M, то их композиция φψ1 задаёт отображение «склейки» из открытого множества n в открытое множество n. Если все отображения склейки из класса Ck (то есть k раз непрерывно дифференцируемых функций), то атлас называется Ck атласом (можно также рассматривать k= или ω, что соответствует бесконечно дифференцируемым и аналитическим склейкам).

Пример: сфера может быть покрыта C-атласом из двух карт на дополнениях северного и южного полюсов со стереографическими проекциями по отношению к этим полюсам.

Два Ck атласа задают одну Ck-гладкую структуру, если их объединение является Ck-атласом.

Для таких многообразий можно ввести понятия касательного вектора, касательного и кокасательного пространств и расслоений.

Для заданной C1-гладкой структуры можно найти C-гладкую структуру, задаваемую новым C-атласом, который задаёт ту же C1-гладкую структуру. Более того, все такие полученные таким образом многообразия являются C-диффеоморфными. Поэтому часто под гладкой структурой понимают C1-гладкую структуру.

Не каждое топологическое многообразие допускает гладкую структуру. Примеры таких «шершавых» многообразий появляются уже в размерности четыре. Также существуют примеры топологических многообразий, которые допускают несколько различных гладких структур. Первый такой пример нестандартной гладкой структуры, так называемая сфера Милнора, был построен Милнором на семимерной сфере.

Примеры

  • Простейший пример многообразия — это пространства n,n[0,+)
  • Окружность — это многообразие размерности 1. Вообще любой несамопересекающийся контур можно рассматривать как одномерное многообразие. Отметим, что для негладкого контура соответствующее отображение вложения в n не будет отображением гладких многообразий.
  • Диск — это Шаблон:Iw.
  • Любая двумерная поверхность без края является примером двумерного многообразия (сфера, тор, крендель, …). По известной топологической классификационной теореме, любое ориентируемое двумерное многообразие имеет вид сферы с несколькими приклеенными ручками.
  • Лента Мёбиуса — это пример двумерного неориентируемого многообразия с краем. Пример неориентируемого двумерного многообразия без края — проективная плоскость (многообразие прямых в 3). Отметим, что его невозможно вложить в 3.
  • Все указанные выше примеры многообразий можно наделить единственным образом гладкой структурой. В более высоких размерностях возможны, однако, разные гладкие структуры на одном и том же топологическом многообразии.
  • Нетривиальные примеры многообразий любой размерности — проективные пространства Pn (многообразие прямых в n+1) и грассмановы многообразия Gr(k,n) (многообразие k-мерных подпространств в n).

Типы многообразий

Классификация многообразий

Каждое связное одномерное многообразие без границы гомеоморфно вещественной прямой или окружности.Шаблон:Нет АИ

Гомеоморфный класс замкнутой связной поверхности задаётся её эйлеровой характеристикой и ориентируемостью (если поверхность ориентируема, то это сфера с ручками, если нет, то связная сумма нескольких копий проективной плоскости).

Классификация замкнутых трёхмерных многообразий следует из гипотезы Тёрстона, которая была недавно доказана Перельманом.

Если размерность больше трёх, то классификация невозможна; более того, невозможно построить алгоритм, который определяет, является ли многообразие односвязным. Тем не менее, существует классификация всех односвязных многообразий во всех размерностях ≥ 5.

Можно также классифицировать гладкие многообразия.

  • В размерностях 1, 2 и 3 любая пара гомеоморфных многообразий является также диффеоморфной.
  • В размерности 4 существуют примеры замкнутых многообразий, которые допускают бесконечное число неэквивалентных гладких структур, а открытые многообразия, как, например, 4, допускают континуум различных гладких структур.
  • В размерностях 5 и выше любое топологическое многообразие допускает не более чем конечное число неэквивалентных гладких структур.

Дополнительные структуры

Часто гладкие многообразия оснащают дополнительными структурами. Вот список наиболее часто встречаемых дополнительных структур:

Вариации и обобщения

См. также

Примечания

Шаблон:Примечания

Литература

Шаблон:Вс Шаблон:Топология Шаблон:Размерность