Гидразин

Материал из testwiki
Перейти к навигации Перейти к поиску

Шаблон:Карточка{{#invoke:check for unknown parameters|check |unknown= |ignoreblank= |preview=Неизвестный параметр «_VALUE_» шаблона Вещество |showblankpositional= |CAS|ChEBI|ChemSpiderID|ECB|EINECS|H-фразы|InChI|InChIKey|NFPA 704|P-фразы|PubChem|R-фразы|RTECS|S-фразы|SMILES|nocat|Кодекс Алиментариус|ЛД50|ООН|ПДК|СГС|большие схемы|вещество1|вещество2|вещество3|вещество4|внешний вид|вращение|гибридизация|давление пара|диапазон прозрачности|динамическая вязкость|дипольный момент|заголовок|изображение|изображение слева|изображение справа|изображение2|изоэлектрическая точка|интервал трансформации|картинка|картинка малая|картинка2|картинка3D|картинка 3D|картинка3D2|кинематическая вязкость|конст. диссоц. кислоты|константа В. дер В.|координационная геометрия|коэфф. электр. сопротив.|кристаллическая структура|критическая плотность|критическая темп.|критическая точка|критическое давление|молярная концентрация|молярная масса|наименование|описание изображений слева и справа|описание изображения|описание изображения слева|описание изображения справа|описание изображения2|описание картинки|описание картинки2|описание картинки3D|описание картинки3D2|описание малой картинки|от. диэлектр. прониц.|плотность|поверхностное натяжение|показатель преломления|предел прочности|пределы взрываемости|примеси|проводимость|растворимость|растворимость1|растворимость2|растворимость3|растворимость4|рац. формула|сигнальное слово|скорость звука|сокращения|состояние|твёрдость|темп. воспламенения|темп. вспышки|темп. кипения|темп. кипения пр.|темп. плавления|темп. разложения|темп. самовоспламенения|темп. стеклования|темп. сублимации|температура размягчения|тепловое расширение|теплопроводность|теплоёмкость|теплоёмкость2|токсичность|традиционные названия|тройная точка|угол Брюстера|уд. электр. сопротивление|удельная теплота парообразования|удельная теплота плавления|фазовые переходы|хим. имя|хим. формула|ширина изображения|ширина изображения2|энергия ионизации|энтальпия кипения|энтальпия образования|энтальпия плавления|энтальпия растворения|энтальпия сгорания|энтальпия сублимации|ЕС|удельная теплота парообразования2|удельная теплота плавления2|Номер UN|эмпирическая формула|теплота парообразования|энтальпия раствородия|тепловое расширодие}} Гидрази́н (диамин, диамид) HA2NNHA2 — неорганическое вещество, бесцветная, чрезвычайно токсичная, сильно гигроскопичная жидкость с неприятным запахом.

Молекула HA2NNHA2 состоит из двух групп HA2N, повёрнутых друг относительно друга, что обусловливает полярность молекулы гидразина, μ = Шаблон:Nobr

Смешивается в любых соотношениях с водой, жидким аммиаком, этанолом; в неполярных растворителях растворяется плохо. Образует органические производные: алкилгидразины и арилгидразины.

История открытия

Первое производное гидразина, а именно гидразобензол был получен Николаем Зининым в 1845 году, который восстановил азобензол сернистым натрием[1]. Полученное вещество содержало фрагмент NHNH-. Тридцать лет спустя немецкие химики Эмиль и Отто Фишеры выделили фенилгидразин CA6HA5NHNHA2, однако они не смогли заменить фенильную группу в нём на водород.

Обычно сообщается, что первооткрывателем гидразина является Теодор Курциус (1887)[2]. Такая информация содержится в «Основах химии» Дмитрия Менделеева и «Истории химии» Микеле Джуа. Однако Курциус получил сульфат гидразина NA2HA6SOA4, тогда как чистый гидразин был выделен только в 1894 году французским химиком Лобре де Брином.

Получение

Основные способы

Гидразин получают окислением аммиака NHA3 или мочевины CO(NHA2)A2 гипохлоритом натрия NaOClШаблон:Sfn (метод Рашига):

NHA3+NaOClNHA2Cl+NaOH,
NHA2Cl+NHA3NA2HA4HCl,

реакция проводится при температуре Шаблон:Nobr и давлении Шаблон:Nobr Повышенная температура и высокое содержание аммиака по отношению к гипохлориту позволяют свести к минимуму побочные реакции, а именно взаимодействие хлорамина с гидразином и дихлорамина с аммиаком. Выход гидразина можно существенно увеличить, если вводить клеевые добавки: глицерин, сахар, крахмал, декстрин (выход гидразина Шаблон:Nobr или казеин, альбумин Шаблон:Nobr Введение клея в сочетании с очень большим соотношением аммиака к гипохлориту позволяет довести выход гидразина до Шаблон:Nobr Рашиг считал, что добавки влияют на вязкость раствора, но позже было показано, что они связывают ионы некоторых металлов, которые катализируют побочную реакцию между хлорамином и гидразином, замедляющую целевой процесс. Содержание, например, ионов меди даже в концентрации Шаблон:Nobr сильно препятствует образованию гидразина, поэтому добавки необходимы. Наиболее эффективными из них являются желатин.

Синтез гидразина окислением мочевины гипохлоритом по механизму аналогичен синтезу аминов из амидов по Гофману:

CO(NHA2)A2+NaOCl+2NaOHNA2HA4+HA2O+NaCl+NaA2COA3,

реакция проводится при температуре Шаблон:Nobr и атмосферном давлении.

Применяется также метод Байера:

2NHA3+HA2OA2NA2HA4+2HA2O.

Безводный гидразин

Указанные выше способы позволяют получить гидразин в виде водных растворов, которые являются непригодными для дальнейшего применения. Необходимо получить концентрированный или безводный гидразин. Для этого разбавленные растворы концентрируют физическими или физико-химическими методами[3].

  • Дистилляция. Кипячением раствора гидразина можно удалить избыток воды, однако такой способ имеет ограничения, потому что при содержании гидразина в растворе выше Шаблон:Nobr состав пара не отличается от состава жидкой фазы. Иными словами, гидразин и вода образуют азеотропную смесь. Иногда при дистилляции добавляют ацетон или ксилол, что позволяет повысить качество разделения.
  • Вымораживание воды. При охлаждении раствора гидразина до температуры ниже Шаблон:Nobr возможно удаление воды вымораживанием. Однако этот метод трудоемок, потому что отделение льда от маточного раствора представляет определённые трудности.
  • Дегидратация. Метод основан на том, что некоторые вещества могут связывать воду путем образования кристаллогидратов. Например, было предложено использовать для этой цели безводный сульфат натрия. Недостатками метода являются невысокая степень концентрирования и необходимость очистки раствора от избытка соли. Однако метод можно применять, когда раствор гидразина уже достаточно концентрированный.
  • Экстракция. Подобрать растворитель для экстракции гидразина из воды очень трудно, потому что молекулы и гидразина, и воды имеют высокую полярность и образуют прочную связь друг с другом. Для экстракции предложен косвенный подход, когда альдегиды и кетоны связывают гидразин в неионные производные — гидразоны и альдазоны. Такие соединения затем экстрагируют бензолом, четырёххлористым углеродом, диэтиловым эфиром и другими. Также для экстракции применяют анилин.
  • Осаждение солей. Гидразин может быть осажден в виде солей, например, сульфата NA2HA4HA2SOA4 или двойных солей MSOA4(NA2HA4)A2SOA4, где M — медь, никель, цинк, кадмий и кобальт.

Кислотно-основные свойства

Жидкий гидразин частично ионизирован на ионы гидразония и гидразида:

2NA2HA4NA2HA5A++NA2HA3A, K=[N2H5+][N2H3]=2,01025.

Благодаря наличию двух неподелённых пар электронов у атомов азота, гидразин способен к присоединению одного или двух ионов водорода. При присоединении одного протона получаются соединения гидразиния с зарядом 1+, двух протонов — гидразония с зарядом 2+, содержащие соответственно ионы NA2HA5A+ и NA2HA6A2+. Водные растворы гидразина обладают основными свойствами, но их основность значительно меньше, чем у растворов аммиака:

NA2HA4+HA2O(NA2HA5)A++OHA, Kb=3,0106,

(для аммиака Kb = 1,78Шаблон:E)

Протонирование второй неподеленной пары электронов протекает ещё труднее:

(NA2HA5)A++HA2O(NA2HA6)A2++OHA, Kb=8,41016.

Гидразин депротонируется при действии гидридов щелочных металлов или их алкилпроизводных с образованием солей - гидразидов:

HA2NNHA2+MA+HAHA2NNHAMA++HA2
HA2NNHA2+AlkMHA2NNHAMA++AlkH

Химические свойства

Термодинамически гидразин значительно менее устойчив, чем аммиак, так как связь NN не очень прочна: разложение гидразина — экзотермическая реакция, протекающая в отсутствие катализаторов при Шаблон:Nobr

3NA2HA44NHA3+NA2.

Переходные металлы (Co, Ni, Cu, Ag) катализируют разложение гидразина. При катализе платиной, родием и палладием основными продуктами разложения являются азот и водород:

NA2HA4NA2+2HA2.

Реакция окисления гидразина хлором используется для удаления следов хлора из концентрированной соляной кислоты:

NA2HA4+2ClA24HCl+NA2.

Энергично реагирует со фтором, причем смесь гидразина и фтора самовоспламеняется, а развивающаяся температура горения может достигать Шаблон:Nobr

NA2HA4+2FA24HF+NA2.

Окисляется кислородом воздуха, а также пероксидом водорода до азота и воды.

Щелочные металлы при растворении в гидразине образуют гидразиды общей формулы MNA2HA3.

Известны соли гидразина — хлорид гидразиния NA2HA5Cl, сульфат гидразония NA2HA6SOA4 и другие. Иногда их формулы записывают как NA2HA4HCl, NA2HA4HA2SOA4< и называют гидрохлорид гидразина, сульфат гидразина и т. д. Большинство таких солей растворимо в воде.

NA2HA4+HCl(NA2HA5)Cl.

Соли гидразина бесцветны, почти все хорошо растворимы в воде. К числу важнейших относится сульфат гидразина NA2HA4HA2SOA4.

Гидразин — энергичный восстановитель. В растворах гидразин обычно окисляется до азота:

4KMnOA4+5NA2HA4+6HA2SOA45NA2+4MnSOA4+2KA2SOA4+16HA2O.

Восстановить гидразин до аммиака можно только сильными восстановителями, такими, как например SnA2+, TiA3+, водородом в момент выделения (реакция Zn+HCl):

NA2HA4+Zn+4HCl2NHA4Cl+ZnClA2.

Известны многие органические производные гидразина. Гидразин, а также гидразин-гидрат, гидразин-сульфат, гидразин-хлорид, широко применяются в качестве восстановителей золота, серебра, платиновых металлов из разбавленных растворов их солей. Медь в аналогичных условиях восстанавливается до закиси меди.

В органическом синтезе гидразин применяется для восстановления карбонильной группы альдегидов и кетонов до метиленовой по Кижнеру — Вольфу (реакция Кижнера — Вольфа), реакция идёт через образование гидразонов, расщепляющихся затем под действием сильных оснований.

Гидразин как растворитель

В гидразине хорошо растворимы галогениды щелочных металлов, причем растворимость растет при переходе от хлоридов к иодидам. При температуре Шаблон:Nobr в Шаблон:Nobr гидразина растворяется Шаблон:Nobr хлорида калия и Шаблон:Nobr иодида калия. Однако сульфаты, карбонаты и сульфиды имеют, как правило, низкую растворимость. Хорошо растворимы соли аммония. При растворении солей в гидразине происходит их гидразинация, то есть фактически сольватация:

ZnSOA4+2NA2HA4[Zn(NA2HA4)A2]SOA4,
CoClA2+3NA2HA4[Co(NA2HA4)A3]ClA2.

Обнаружение

Качественной реакцией на гидразин служит образование окрашенных гидразонов с некоторыми альдегидами, в частности — с 4-диметиламинобензальдегидом.

Применение

Гидразин применяют в органическом синтезе, в производстве пластмасс, резины, инсектицидов, взрывчатых веществ, в качестве компонента ракетного топлива, как восстановитель при выделении золота из растворов.

Гидразин также применяется в качестве топлива в гидразин-воздушных низкотемпературных топливных элементах.

Жидкая смесь гидразина и нитрата аммония используется как мощное взрывчатое средство с нулевым кислородным балансом — астролит, который, однако, в настоящее время практического значения не имеет.

Антикоррозийный агент

Гидразин применяется как антикоррозионный агент в тех случаях, когда коррозия связана с поглощением кислорода. Его добавляют в воду для защиты от коррозии теплосилового оборудования и нефтеналивных танкеров. Для этой же цели могут использоваться соли-восстановители, например, сульфит натрия, но гидразин имеет перед ними то преимущество, что продукт его окисления в отличие от сульфита натрия не является солью и таким образом не приводит к росту концентрации солей в воде.

Гидразин широко применяется в химической промышленности в качестве восстановителя кислорода, содержащегося в деминерализованной воде, применяемой для питания котлов (котельные установки, производства аммиака, слабой азотной кислоты и другое). При этом протекает следующая химическая реакция:

NA2HA4+OA2NA2+2HA2O.

Металлические покрытия

Путем восстановления гидразином можно получать металлические покрытия, порошки и золи некоторых веществ. Получение металлических покрытий таким способом относится к классу химических методов. Его преимуществом является возможность равномерного осаждения металла на изделия со сложным профилем, мелкие детали и неметаллические поверхности, при этом слой покрытия механически менее напряженный, чем при гальваническом способе. Также они содержат минимальное количество примесей. Кроме того, гидразин применяют в качестве добавки к электролитам при нанесении гальванических покрытий с целью улучшения их качества.

Лекарство в онкологии

В 1960-х годах были обнаружены лекарственные свойства гидразин-сульфата (сульфат гидразина), и с тех пор препараты на основе этого вещества применяются для лечения онкологических больных. Раковые заболевания сопровождаются нарушением метаболизма молочной кислоты, в результате чего молочная кислота не превращается в углекислоту, а может наоборот переходить в глюкозу, из которой она образуется. Нарушение углеводного обмена лишает клетки энергии и приводит к потере веса и истощению у больных раком. Было показано, что гидразин-сульфат ингибирует фермент, ответственный за превращение молочной кислоты в глюкозу. Сообщается также, что гидразин-сульфат может останавливать рост опухолей и даже вызывать их распад[4].

Гидразина сульфат применяется в случае таких заболеваний, как неоперабельные прогрессирующие распространённые формы, рецидивы и метастазы злокачественных опухолей — рак лёгкого (особенно немелкоклеточный), молочных желёз, желудка, поджелудочной железы, гортани, эндометрия, шейки матки, десмоидный рак, саркома мягких тканей, фибросаркома, нейробластома, лимфогранулематоз, лимфосаркома (монотерапия или в составе полихимиотерапии).

Ракетное топливо

Во время Второй мировой войны гидразин применялся в Германии в качестве одного из компонентов топлива для реактивных истребителей «Мессершмитт Ме-163» (C-Stoff, содержащего до Шаблон:Nobr гидрата гидразина).

Гидразин и его производные (метилгидразин, несимметричный диметилгидразин и их смеси (аэрозин)) широко распространены как ракетное горючее. Они могут быть использованы в паре с самыми разными окислителями, а некоторые и в качестве однокомпонентного топлива, в этом случае рабочим телом двигателя являются продукты их разложения на катализаторе. Это удобно для маломощных двигателей.

Теоретические характеристики различных видов ракетного топлива, образованных гидразином с различными окислителями
Окислитель Удельная тяга (P1, с*) Плотность топлива г/см³ Прирост скорости, ΔVид, 25, м/с Весовое содержание горючего %
Фтор 364,4 с 1,314 5197 м/с 31 %
Тетрафторгидразин 334,7 с 1,105 4346 м/с 23,5 %
ClF3 294,6 с 1,507 4509 м/с 27 %
ClF5 312,0 с 1,458 4697 м/с 26,93 %
Перхлорилфторид 295,3 с 1,327 4233 м/с 40 %
Фторид кислорода 345,9 с 1,263 4830 м/с 40 %
Кислород 312,9 с 1,065 3980 м/с 52 %
Пероксид водорода 286,9 с 1,261 4003 м/с 33 %
N2O4 291,1 с 1,217 3985 м/с 43 %
Азотная кислота 279,1 с 1,254 3883 м/с 40 %
  • Удельная тяга равна отношению тяги к весовому расходу топлива; в этом случае она измеряется в секундах Шаблон:Nobr Для перевода весовой удельной тяги в массовую её надо умножить на ускорение свободного падения (примерно равное Шаблон:Nobr В ракетно-космической сфере для обозначения чаще используют термин «удельный импульс тяги» (выражаемый в м/с) или просто «удельный импульс» (в секундах). Выраженная в м/с, эта величина характеризует скорость истечения реактивной струи (приблизительно, с учётом дополнительного слагаемого в формуле тяги ЖРД). Удельный импульс является важнейшей характеристикой совершенства ракетных двигателей. Зависит от типа применяемой топливной пары, схемы и конструкции двигателя и других параметров.

Токсичность

Гидразин и большинство его производных очень токсичны по отношению к млекопитающим. На живые организмы гидразин оказывает общетоксическое действие. Небольшие концентрации гидразина вызывают раздражение глаз, дыхательных путей. При повышении концентрации начинается головокружение, головная боль и тошнота. Далее следуют судороги, токсический отёк лёгких, а за ними — кома с последующим летальным исходом. Рекомендуемая ПДК в воздухе рабочей зоны не более Шаблон:Nobr

Гидразин и зарегистрированные препараты на его основе относятся[5] к 1-му и 2-му классу опасности[6] (для человека).

Примечания

Шаблон:Примечания

Литература

Шаблон:Родственные проекты


Шаблон:Внешние ссылки