Амины

Материал из testwiki
Перейти к навигации Перейти к поиску

Шаблон:О

Первичный амин Вторичный амин Третичный амин

Ами́ны — органические соединения, являющиеся производными аммиака, в молекуле которого один или несколько атомов водорода замещены на углеводородные радикалы. По числу замещённых атомов водорода различают соответственно первичные (замещён один атом водорода), вторичные (замещены два атома из трёх) и третичные амины (замещены все три атома). Выделяют также четвертичные аммониевые соединения вида R4N+X-Шаблон:Sfn.

По характеру органической группы, связанной с азотом, различают алифатические, ароматические и жирно-ароматические (содержат ароматический и алифатический радикалы) амины. Ароматические амины называют анилинами. По числу NH2-групп в молекуле амины делят на моноамины, диамины, триамины либо полиаминыШаблон:Sfn.

Номенклатура

Рекомендации ИЮПАК предписывают следующие правила для составления названий аминов. В случае первичных аминов пользуются одним из трёх способов: (1) добавляют суффикс «-амин» к названию родоначального углеводорода (предпочтительно); (2) добавляют название заместителя к корню «азан» или (3) добавляют название заместителя к корню «амин». Например:

(1) CH3NH2 — метанамин;
(2) CH3NH2 — метилазан;
(3) CH3NH2 — метиламин[1].

Для вторичных и третичных аминов используются похожие рекомендации: (1) составить заместительное название с суффиксом «-амин» и указать остальные заместители при атоме азота (предпочтительно); (2) указать заместители в алфавитном порядке в виде приставок к корню «азан» или (3) указать заместители в алфавитном порядке в виде приставок к корню «амин». Например:

(1) (CH3CH2)2NCH2CH3 — N,N-диэтилэтанамин;
(2) (CH3CH2)2NCH2CH3 — триэтилазан;
(3) (CH3CH2)2NCH2CH3 — триэтиламин[1].

В более сложных структурах, где аминогруппа не является старшей, она обозначается в виде префикса «амино-» (H2NCH2CH2COOH — 3-аминопропановая кислота). Если эта аминогруппа дополнительно замещена, название заместителя помещают перед ней в виде приставки ((CH3NH)2CHCH2CH2COOH — 4,4-бис(метиламино)бутановая кислота)[1].

Диамины, триамины и т. д. называют, добавляя перед суффиксом «-амин» множащие приставки «ди-», «три-», «тетра-» и т. д. (H2NCH2CH2NH2 — этандиамин-1,2, этилендиамин)[1].

Многие ароматические амины сохраняют тривиальные названия: анилин PhNH2, толуидины CH3C6H4NH2, анизидины CH3OC6H4NH2Шаблон:Sfn.

Физические свойства и строение

Физические свойства аминов

Низшие амины — метиламин, диметиламин, триметиламин и этиламин — при комнатной температуре являются газами. Высшие амины до 12 атомов углерода являются жидкостями. Амины с более длинными заместителями являются твёрдыми веществамиШаблон:Sfn.

Низшие амины смешиваются с водой. Трибутиламин смешивается с водой частичноШаблон:Sfn.

Амины имеют характерный рыбный запах, который можно почувствовать при концентрации амина 0,1 м. д.Шаблон:Sfn

Строение аминогруппы

Аминогруппа имеет пирамидальное строение: пирамиду образуют три заместителя атома азота, а в четвёртой вершине тетраэдра находится неподелённая электронная пара. Длина связи N–H в метиламине равна 1,011 Å, а длина связи C–N составляет 1,474 Å. Угол H–N–H равен 105,9°, а угол C–N–H равен 112,9°Шаблон:Sfn.

Инверсия атома азота

Инверсия атома азота

Имея тетраэдрическое строение, sp3-гибридный атом азота в аминах постоянно претерпевает инверсию через sp2-гибридное состояние. Энергетический барьер для инверсии у алкиламинов составляет 16-40 кДж/моль. При комнатной температуре скорость инверсии оставляет 103−105 Гц. Это приводит к тому, что если амин имеет три разных заместителя при атоме азота, теоретически для него можно изобразить энантиомерные структуры, однако на практике их выделить нельзя, потому что из-за инверсии они быстро превращаются друг в друга. Исключением является основание Трёгера, в котором конфигурация атомов азота закреплена и которое существует в виде двух стереоизомеровШаблон:Sfn. Также стереохимически стабильны четвертичные аммониевые солиШаблон:Sfn.

Спектральные характеристики

ИК-спектры аминов характеризуются наличием полос, соответствующих колебаниями связей N-H. У первичных аминов эти колебания проявляются в виде двух полос в области 3400-3380 см−1 и 3340-3320 см−1 (полосы соответствуют симметричным и антисимметричным колебаниям N-H). У вторичных аминов есть только одна полоса в области 3360-3310 см−1. Третичные амины не имеют полос поглощения в этой области. Ароматические амины имеют соответственно то же число полос в области 3500-3300 см−1Шаблон:Sfn.

Алифатические амины не поглощают в видимой и ультрафиолетовой области спектра. Ароматические амины имеют две полосы поглощения, соответствующие π→π*-переходамШаблон:Sfn.

Получение

Из спиртов

Стандартным промышленным способом получения низших аминов является реакция соответствующего спирта с аммиаком над подходящим катализатором. Поскольку получаемый первичный амин может также реагировать со спиртом, продуктом всегда является смесь первичного, вторичного и третичного амина. Кроме того, образование вторичного и третичного амина является экзотермическим, а поэтому выгодным. Состав продуктов можно контролировать соотношением реагентов, температурой и продолжительностью синтезаШаблон:Sfn.

𝖭𝖧𝟥+𝖱𝖢𝖧𝟤𝖮𝖧𝖱𝖢𝖧𝟤𝖭𝖧𝟤+𝖧𝟤𝖮
𝖱𝖢𝖧𝟤𝖭𝖧𝟤+𝖱𝖢𝖧𝟤𝖮𝖧(𝖱𝖢𝖧𝟤)𝟤𝖭𝖧+𝖧𝟤𝖮
(𝖱𝖢𝖧𝟤)𝟤𝖭𝖧+𝖱𝖢𝖧𝟤𝖮𝖧(𝖱𝖢𝖧𝟤)𝟥𝖭+𝖧𝟤𝖮

Аммиак, спирт и водород пропускают над катализаторами на основе никеля, кобальта, меди, железа, реже — платины и палладия. В качестве подложки применяются оксид алюминия, оксид кремния и оксид циркония. Условия проведения реакции: 0,5–25 МПа, 100–250 °С (в зависимости от катализатора). Считается, что процесс протекает в три стадии:

Чтобы сдвинуть равновесие в сторону первичных аминов, используют двойной избыток аммиака. Согласно уравнению реакции, дополнительный водород в ней не требуется, однако в его отсутствие происходит образование побочных продуктов: иминов, енаминов и нитрилов. Наличие водорода также способствует активности катализатораШаблон:Sfn.

Из карбонильных соединений

По аналогии с предыдущим способом, амины получают по реакции аммиака с карбонильными соединениями. В этом случае продукт необходимо прогидрировать, поэтому водород расходуется в стехиометрическом количестве. Катализаторы используются те же, что и в синтезе аминов из спиртовШаблон:Sfn.

𝖱𝟤𝖢𝖮+𝖭𝖧𝟥𝖱𝟤𝖢=𝖭𝖧𝖱𝟤𝖢𝖧𝖭𝖧𝟤

Из нитрилов

Нитрилы в промышленности каталитически гидрируют до соответствующих первичных аминов. В качестве катализаторов используют благородные металлы (палладий, платину, родий), никель, кобальт, а также железо. Благородные металлы позволяют провести реакцию в мягких условиях: 20—100 °С, 0,1–0,5 МПа, а никелевые и кобальтовые катализаторы требуют температуры до 180 °С и давления в 25 МПаШаблон:Sfn.

𝖱𝖢𝖭+𝟤𝖧𝟤𝖱𝖢𝖧𝟤𝖭𝖧𝟤

Из Галогенпроизводных

По реакции Делепина (через гексамин)

Синтез по Габриэлю

Другие промышленные методы

Традиционный препаративный подход, основанный на реакции алкилгалогенидов и аммиака или аминов с образованием аммониевых солей, не нашёл широкого применения в промышленности. В настоящее время так получают лишь этилендиамин, гомологичные ему полиамины, аллиламин и некоторые малотоннажные лекарственные препараты. Проблемой в данном подходе является отсутствие дешёвого сырья, коррозия, а также проблемы с качеством продуктовШаблон:Sfn.

Восстановление нитросоединений используется редко, поскольку исходные нитроалканы не очень широко доступны. По состоянию на 2015 год этот метод применяется для синтеза 2-амино-2-метилпропанола-1Шаблон:Sfn. Первичные ароматические амины получаются по этому методу хорошо: наиболее часто для их получения ароматические нитросоединения гидрируют водородом в жидкой или газовой фазе в присутствии никеля, платины или палладия. Также применяют железо или цинк и сульфиды щелочных металловШаблон:Sfn.

Амины с третичным углеводородным заместителем, например, трет-бутиламин весьма трудно получить обычными методами. Их синтезируют по реакции Риттера, присоединяя циановодород к алкену в присутствии концентрированной серной кислоты. Процесс проводят при 30—60 °С, а получаемый полупродукт гидролизуют при 100 °С. Применение реакции Риттера весьма ограниченно из-за использования токсичного циановодорода, а также из-за образования существенного количества побочных солей (3,3 кг на 1 кг трет-бутиламина), которые необходимо утилизироватьШаблон:Sfn.

Лабораторные методы

В лабораторных условиях амины получают разнообразными методами: синтезом по Габриэлю, восстановлением нитрилов водородом, алюмогидридом лития либо дибораном, восстановлением амидов под действием тех же реагентов, восстановлением азидов, оксимов и нитросоединенийШаблон:Sfn.

Первичные и вторичные амины удобно получать по реакции восстановительного аминирования. Для синтеза первичных аминов в реакцию вводят карбонильное соединение и аммиак, а для синтеза вторичных аминов — карбонильное соединение и первичный амин. Полученное основание Шиффа затем восстанавливают водородом, боргидридом натрия или цианоборгидридом натрияШаблон:Sfn.

Кроме того, первичные амины можно получить из карбоновых кислот при помощи перегруппировок Гофмана, Шмидта и КурциусаШаблон:Sfn.

Одним из лабораторных способов является реакция аминов и аммиака с галогеналканами:

𝖱𝖷+𝟤𝖱𝖭𝖧𝟤𝖱𝖱𝖭𝖧+𝖱𝖱𝖭H𝟤+𝖷

Такие реакции, которые наиболее полезны для алкалоидов и бромидов, редко используются, поскольку степень алкилирования трудно контролировать[2]. Селективность может быть улучшена с помощью реакции Делепина, хотя это редко используется в промышленном масштабе.

Прямое электрофильное аминирование

Получение ароматических аминов прямым электрофильным аминированием ароматических углеводородов долгое время считалась неосуществимым. В 2019 году российские ученые из Томского политехнического университета показали возможность прямого аминирования аренов гидразойной кислотой по классическому механизму SEAr, с участием катиона аминодиазония H2N3+[3].

Химические свойства

Основные свойства

Амины, являясь производными аммиака, имеют сходное с ним строение и проявляют подобные ему свойства. Атом азота содержит неподелённую электронную пару и выступает как основание Льюиса. Амины являются более сильными основаниями, чем вода, поэтому они также проявляют свойства оснований Брёнстеда — Лоури. Численно основные свойства аминов выражаются константой основности Kb либо pKbШаблон:Sfn.

𝖱𝖭𝖧𝟤+𝖧𝟤𝖮𝖱𝖭H𝟥++𝖮𝖧
Kb=[𝖱𝖭H𝟥+][𝖮𝖧][𝖱𝖭𝖧𝟤]
 pKb=lgKb

Амины являются более сильными основаниями, чем аммиак, за счёт донорного влияния алкильных групп. Однако из всех аминов наиболее сильными основаниями являются вторичные амины. Третичные амины проигрывают им в основности, что связано с пространственными препятствиями для переноса к ним протона и последующей сольватации образовавшегося аммониевого катиона. В газовой фазе, где эффекты сольватации отсутствуют, основность аминов предсказуемо уменьшается в следующем ряду: третичные > вторичные > первичные > аммиак.Шаблон:Sfn.

Однако в водных растворах эта закономерность искажается, наличие третьего заместителя создаёт пространственное затруднение как для присоединения протона, так и для сольватации образовавшегося катиона молекулами растворителя.

Ароматические амины являются более слабыми основаниями, что связывают с делокализацией неподелённой пары атома азота по ароматическому ядруШаблон:Sfn.

название формула pKb pKa(BH+) pKa
диэтиламин Et2NH 3.06 10.94
триэтиламин Et3N 3.25 10.75
диметиламин (CH3)2NH 3.27 10.73
метиламин (CH3)NH2 3.36 10.64
этиламин EtNH2 3.37 10.63
триметиламин (CH3)3N 4.19 9.81
аммиак NH3 4.79 9.21[4] ~33
4-метоксиланилин 8.66 5.34
4-метиланилин 8.90 5.10 8.83
анилин 9.38 4.62
4-хлоранилин 10.02 3.98
4-нитроанилин 4-NO2C5H4NH2 13 1.0
в среднем для аминов характерно
соединение Алкиламины NH3 Ариламины
pKa(BH+) 10.6 - 11.2 9.26 4.6 - 5.1

Амины являются очень слабыми кислотами: pKa для них составляет порядка 35-40. Соответственно, анионы, получаемые из аминов, являются очень сильными основаниями, что находит применение в органическом синтезе (см. LDA)Шаблон:Sfn.

Алкилирование аминов

Амины реагируют с алкилгалогенидами по механизму нуклеофильного замещения с образованием более замещённых аминов. Реакция протекает в диполярных апротонных растворителях (ДМФА, ацетонитриле)Шаблон:Sfn.

𝖱𝖭𝖧𝟤+𝖱𝖢𝗅𝖱𝖱𝖭H𝟤+𝖢𝗅

Ацилирование аминов

Первичные и вторичные амины вступают в реакции ацилирования с галогенангидридами, ангидридами карбоновых кислот, сложными эфирами. Ацилирующие реагенты можно расположить в ряд активности: RCOR < RCONR2 < RCOOR < (RCO)2O < RCOHal < RCOBF4. Также скорость реакции зависит от нуклеофильности амина, которую условно можно связать с основностью амина: алкиламины > ариламины > амиды. Внутримолекулярное ацилирование происходит легче, чем межмолекулярное[5].

Реакция ацилирования аминов
Реакция ацилирования аминов

В реакции с хлорангидридами происходит выделение хлороводорода, поэтому в реакцию необходимо брать двойное количество амина, чтобы второй эквивалент связал этот хлороводород. Образующаяся аммониевая соль выпадает в осадок и фильтруется. Как следствие, максимальный выход амида из амина составляет 50 %. Как вариант, можно использовать другие органические и неорганические основания, чтобы повысить выход. Например, в реакции Шоттена — Баумана используется гидроксид натрия или гидроксид калия. Из органических оснований применяются пиридин, диметиланилин, триэтиламин и др.[5]

Реакция с альдегидами и кетонами

При реакции с альдегидами и кетонами первичные амины образуют имины (основания Шиффа), а вторичные амины дают енаминыШаблон:Sfn.

𝖱𝖢𝖧𝖮+𝖱𝖭𝖧𝟤𝖱𝖢𝖧=𝖭𝖱+𝖧𝟤𝖮

Реакция с азотистой кислотой

Реакция с азотистой кислотой является качественной для идентификации первичных, вторичных и третичных аминов. Первичные алифатические амины диазотируются азотистой кислотой с образованием солей алкилдиазония. Эти соли даже в мягких условиях разлагаются с выделением газообразного азота и образованием карбокатиона, который может превратиться в алкен, спирт или другое устойчивое соединениеШаблон:Sfn. Иногда эту реакцию используют для расширения цикла, как, например, в перегруппировке ДемьяноваШаблон:Sfn.

В отличие от алифатических, первичные ароматические амины при диазотировании образуют устойчивые соли арендиазония, которые способны вступать в реакции замещения молекулы азота на нуклеофил либо в реакции азосочетанияШаблон:Sfn.

Вторичные амины (алифатические и ароматические) при действии азотистой кислоты нитрозируются по атому азота, давая жёлтые N-нитрозоаминыШаблон:SfnШаблон:Sfn.

Алифатические третичные амины дают смесь соли амина и N-нитрозоаммонийной солиШаблон:Sfn, а ароматические третичные амины нитрозируются в пара-положениеШаблон:Sfn.

Реакция с сульфонилгалогенидами

Реакция аминов с бензолсульфонилхлоридом либо пара-толуолсульфонилхлоридом также является качественной реакцией на первичные, вторичные и третичные амины и называется тестом Хинсберга. В этой реакции смешивают амин и сульфогалогенид и встряхивают их с водным раствором гидроксида натрия, а через 10-15 мин подкисляют полученный раствор. Первичные амины на первой стадии дают сульфамид RNHSO2Ar, который в щёлочи растворяется благодаря наличию кислого атома водорода при атоме азота. При добавлении кислоты он выпадает в осадокШаблон:Sfn.

Вторичные амины также дают сульфамид, однако он не содержит кислого атома водорода и не растворяется в щёлочи. При подкислении смеси в данном случае ничего не происходитШаблон:Sfn.

Третичные амины не вступают в эту реакцию, а сульфонилгалогенид в щелочной среде гидролизуется до соли сульфокислоты. При подкислении третичный амин растворяется, переходя в солевую формуШаблон:Sfn.

Галогенирование аминов

Под действием гипохлоритов первичные и вторичные амины галогенируются по атому азотаШаблон:Sfn.

Окисление аминов

Амины легко вступают в реакции окисления, причём легче всего это делают третичные амины. Препаративными реагентами для этого превращения являются раствор пероксида водорода и органические надкислоты. Образующиеся N-оксиды третичных аминов бывают хиральными и могут быть разделены на энантиомеры. При обработке восстановителями, например трифенилфосфином, они снова превращаются в аминыШаблон:Sfn.

Первичные амины могут окисляться до нитросоединений. В качестве окислителя в этой реакци используют трифторнадуксусную кислотуШаблон:Sfn.

Реакции ароматических аминов

Ароматические амины (анилины) вступают в типичные реакции ароматического электрофильного замещения. Поскольку аминогруппа является активирующим заместителем, эти реакции протекают очень активно даже под действием мягких реагентовШаблон:Sfn.

Так, галогенирование анилинов не требует использования кислоты Льюиса. Реакцию нельзя остановить на стадии моно- и дигалогенирования: например, при бромировании образуется сразу 2,4,6-триброманилин. Если необходимо ввести только один атом галогена, аминогруппу ацилируют, уменьшая её активирующее влияниеШаблон:Sfn.

В стандартных условиях нитрования ароматических соединений амины быстро окисляются, поэтому нитруют их ацильные производные. Третичные амины можно нитровать азотной кислотой в уксусной кислоте. Сульфируют анилины "методом запекания": сначала смешивают амин с серной кислотой, получая соль, которую далее в сухом виде нагревают при 180-200 °С. В промышленности так получают сульфаниловую кислотуШаблон:Sfn.

Защитные группы для аминов

В органическом синтезе применяется большое разнообразие защитных групп для аминов. Наибольшую популярность получили группы Cbz (бензилоксикарбонильная) и Boc (трет-бутоксикарбонильная). Бензилоксикарбонильную группу вводят обработкой амина бензиловым эфиром хлоругольной кислоты PhCH2OCOCl в присутствии основания. Удалить её можно гидрогенолизом либо бромоводородом в уксусной кислоте. Группа Boc вводится с помощью ди-трет-бутилдикарбоната, а удаляется при обработке кислотойШаблон:Sfn.

Методы определения

Для идентификации аминов используют несколько качественных реакций. Первичные амины нагревают с хлороформом в присутствии щёлочи: при этом они превращаются в изонитрилы и дают неприятный запах. Вторичные амины обрабатывают азотистой кислотой, а полученный осадок сплавляют с фенолом и подкисляют, наблюдая зелёное окрашиваниеШаблон:Sfn.

Количественное определение проводят методом Кьельдаля, методом Ван Слайка, бромометрией, кислотно-основным титрованием и хроматографией. Первичные амины также превращают в азосоединения или основания Шиффа, а затем анализируют фотометрическиШаблон:Sfn.

Вредное воздействие

Алифатические амины оказывают негативное действие на нервную систему и сосуды, нарушают проницаемость клеточных мембран, работу печени и вызывают развитие дистрофии. Ароматические амины способствуют выработке метгемоглобина; некоторые из них канцерогенныШаблон:Sfn.

Мировой рынок

Мировой рынок алкиламинов оценивался в 6,26 млрд долларов США в 2023 году[6].

Примечания

Шаблон:Примечания

Литература

Ссылки

Шаблон:Викисловарь

Шаблон:Внешние ссылки Шаблон:Органические вещества

  1. 1,0 1,1 1,2 1,3 Шаблон:Публикация
  2. Шаблон:Книга
  3. Шаблон:Статья
  4. Hall, H. K. (1957). Correlation of the Base Strengths of Amines1. Journal of the American Chemical Society, 79(20), 5441–5444. doi:10.1021/ja01577a030
  5. 5,0 5,1 Шаблон:Публикация
  6. Alkylamines (Methylamines, Ethylamines, Propylamines, Butylamines, Cyclohexylamines) Market Size, Trends and Forecasts 2023 & 2024-2029 - ResearchAndMarkets.com Автор: Research and Markets, Business Wire (English), 01/13/2025