Уравнение Лапласа

Материал из testwiki
Перейти к навигации Перейти к поиску

Уравнение Лапласа — дифференциальное уравнение в частных производных. В трёхмерном пространстве уравнение Лапласа записывается так:

2ux2+2uy2+2uz2=0

и является частным случаем уравнения Гельмгольца.

Уравнение рассматривают также в двумерном и одномерном пространстве. В двумерном пространстве уравнение Лапласа записывается:

2ux2+2uy2=0

Также и в n-мерном пространстве. В этом случае нулю приравнивается сумма n вторых производных.

С помощью дифференциального оператора

Δ=2x2+2y2+2z2+...

— (оператора Лапласа) — это уравнение записывается (для любой размерности) одинаково как Δu=0. В этом случае размерность пространства указывается явно (или подразумевается).

Уравнение Лапласа относится к эллиптическому виду. Функции, являющиеся решениями уравнения Лапласа, называются гармоническими функциями. Неоднородное уравнение Лапласа называется уравнением Пуассона.

  • Замечание: всё сказанное выше относится к декартовым координатам в плоском пространстве (какова бы ни была его размерность). При использовании других координат представление оператора Лапласа меняется, и, соответственно, меняется запись уравнения Лапласа (пример — см. ниже). Эти уравнения также называются уравнением Лапласа, однако для устранения неоднозначности терминологии при этом обычно явно добавляется указание системы координат (и, при желании полной ясности, размерности), например: "двумерное уравнение Лапласа в полярных координатах".

Физический смысл уравнения Лапласа

Δu=0 — это уравнение Лапласа, или уравнение непрерывности, выражающее, что идеальный флюид, в котором нет завихрений, не разрушим. Это уравнение математически кодирует прописную истину: если флюид не сжимаем, из сколь угодно малого объема в момент времени должно выйти столько же жидкости, сколько ее содержится в нем.

Другие формы уравнения Лапласа

  • В сферических координатах  (r,θ,φ) уравнение имеет вид
1r2r(r2fr)+1r2sinθθ(sinθfθ)+1r2sin2θ2fφ2=0

Особые точки r=0,θ=0,θ=π.

  • В полярных координатах (r,φ) уравнение имеет вид
1rr(rur)+1r22uφ2=0

Особая точка r=0.

  • В цилиндрических координатах (r,φ,z) уравнение имеет вид
1rr(rfr)+2fz2+1r22fφ2=0

Особая точка r=0.

См. также оператор набла в различных системах координат.

Применение уравнения Лапласа

Уравнение Лапласа возникает во многих физических задачах механики, теплопроводности, электростатики, гидравлики. Большое значение оператор Лапласа имеет в квантовой физике, в частности в уравнении Шрёдингера.

Решения уравнения Лапласа

Несмотря на то, что уравнение Лапласа является одним из самых простых в математической физике, его решение сопряжено с трудностями. Особенно трудным бывает численное решение из-за нерегулярности функций и наличия особенностей.

Гильберт выполнил строгое решение этого уравнения в частных производных.

Общее решение

Одномерное пространство

В одномерном вещественном пространстве уравнение Лапласа, сводящееся к равенству нулю второй производной, имеет общим решением линейную функцию:

f(x)=C1x+C2

где C1,C2 — произвольные постоянные.

Двумерное пространство

Уравнению Лапласа на двумерном пространстве удовлетворяют аналитические функции. Аналитические функции рассматриваются в теории функций комплексного переменного, и класс решений уравнения Лапласа можно свести к функции комплексного переменного.

Уравнение Лапласа для двух независимых переменных формулируется в следующем виде

φxx+φyy=0.

Если z = x + iy, и

f(z)=u(x,y)+iv(x,y),

то условия Коши — Римана являются необходимыми и достаточными для того, чтобы функция f(z) была аналитической:

ux=vy,uy=vx.

И вещественная и мнимая части аналитических функций удовлетворяют уравнению Лапласа. Продифференцировав условия Коши — Римана, получаем

uyy=(vx)y=(vy)x=(ux)x.

А это не что иное, как уравнение Лапласа для функции u. Точно также показывается, что функция v удовлетворяет уравнению Лапласа.

Задача Дирихле — краевые условия для уравнения Лапласа, когда искомая функция задана на ограниченной области и известны её значения на границе.

Задача Неймана — в дифференциальных уравнениях краевая задача с заданными граничными условиями для производной по нормали искомой функции на границе области — так называемые граничные условия второго рода.

Литература