Модель Пуанкаре в верхней полуплоскости

Материал из testwiki
Перейти к навигации Перейти к поиску
Параллельные лучи в модели Пуанкаре в верхней полуплоскости

Модель Пуанкаре в верхней полуплоскости — это верхняя половина плоскости {(x,y)y>0;x,y}, обозначаемая ниже как H, вместе с метрикой (метрикой Пуанкаре), которая делает её моделью двумерной гиперболической геометрии (геометрии Лобачевского).

Эквивалентно, модель Пуанкаре в верхней полуплоскости иногда описывается как комплексная плоскость, в которой мнимая компонента (координата y, упомянутая выше) положительна.

Модель Пуанкаре в верхней полуплоскости носит имя Анри Пуанкаре, но её создал Эудженио Бельтрами, который использовал её вместе с моделью Кляйна и моделью Пуанкаре́ в круге, чтобы показать, что гиперболическая геометрия Шаблон:Не переведено 5, насколько непротиворечива евклидова геометрия.

Эта модель конформна, что означает, что углы, измеренные в точке модели, равны углам на гиперболической плоскости.

Преобразование Кэли даёт изометрию между моделью в полуплоскости и моделью Пуанкаре́ в круге.

Эту модель можно обобщить до модели (n+1)-мерного гиперболического пространства путём замены вещественного числа x вектором в n-мерном евклидовом векторном пространстве.

Метрика

Метрика модели в полуплоскости {x,y|y>0} имеет вид

(ds)2=(dx)2+(dy)2y2,

где s измеряет длину вдоль (возможно кривой) линии. Прямые на гиперболической плоскости (геодезические для этого метрического тензора, т.е. кривые, минимизирующие расстояние), представляются на этой модели дугами окружностей, перпендикулярными оси x (полуокружности с центром на оси x) и вертикальными лучами, перпендикулярными оси x.

Вычисление расстояния

В общем случае расстояние между двумя точками измеряется в этой метрике вдоль геодезических и равно:

dist(x1,y1,x2,y2)=arch(1+(x2x1)2+(y2y1)22y1y2)=2arsh12(x2x1)2+(y2y1)2y1y2=2ln(x2x1)2+(y2y1)2+(x2x1)2+(y2+y1)22y1y2,

где arch и arsh — это обратные гиперболические функции

arshx=ln(x+x2+1) , archx=ln(x+x21);x1.

Некоторые специальные случаи могут быть упрощены:

dist(x,y1,x,y2)=|lny2y1|=|ln(y2)ln(y1)|[1].
dist(x1,y,x2,y)=arch(1+(x2x1)22y2)=2arsh(|x2x1|2y)
dist(x,r,x±rsinϕ,rcosϕ)=arsh(tanϕ)=arch(1cosϕ)=ln(1+sinϕcosϕ)

Другим способом вычисления расстояния между двумя точками является длина дуги вдоль (евклидовой) полуокружности:

dist(AB)=|ln(|BA| |AB||AA| |BB|)|.

где A,B — точки полуокружности (концы), лежащие на граничной прямой, а |PQ| — это евклидова длина сегмента окружности, соединяющей точки P и Q в этой модели.

Специальные точки и кривые

  • Бесконечно удалённые точки в модели Пуанкаре в верхней полуплоскости бывают двух типов:
  • Прямые, геодезические (кратчайшие пути между точками, находящимися на ней) моделируются
    • полуокружностями, концы которых находятся на оси x
    • Вертикальными лучами, ортогональными оси x
  • Окружности (кривые, равноудалённые от центральной точки) с центром в точке (x,y) и радиусом r моделируются:
окружностями с центром (x,ycosh(r)) и радиусом ysinh(r)
  • Гиперцикл (или эквидистанта, кривая, удалённая от гиперболической прямой, её оси или базы) моделируется
    • либо дугой окружности, которая пересекает ось x в тех же двух бесконечно удалённых точках, что и полуокружность, которая является базой, но имеет с осью x острый или тупой (не прямой) угол.
    • либо прямой, которая пересекает ось x в той же точке, что и вертикальный луч, который моделирует базу, но не перпендикулярной оси x.
  • Орицикл (предел семейства окружностей с общей касательной, проходящих через фиксированную точку и лежащих по одну сторону от этой касательной, образующийся при стремлении радиуса этих окружностей к бесконечности) моделируется

Краткий обзор евклидовых окружностей

Пусть дана евклидова окружность с центром (xe,ye) и радиусом re.

  • Если евклидова окружность полностью находится в верхней полуплоскости, она представляет гиперболическую окружность с центром (xe,ye2re2) и радиусом 12ln(ye+reyere).
  • Если евклидова окружность полностью находится в верхней полуплоскости и касается границы, она представляет орицикл с центром в бесконечно удалённой точке c (xe,0).
  • Если окружность пересекает границу ортогонально (ye=0), она представляет гиперболическую прямую.
  • Если окружность пересекает границу не ортогонально, она представляет гиперцикл.

Построения с помощью циркуля и линейки

Шаблон:См. также Здесь показывается, как производить построения с помощью циркуля и линейки в модели Пуанкаре[2]. Например, как построить полуокружность в евклидовой полуплоскости, которая моделирует гиперболическую прямую, проходящую через две точки.

Построение гиперболической прямой, проходящей через две точки

Построение прямой (красная), проходящей через две точки A и B.
M – середина отрезка.
O – центр полученной окружности (гиперболической прямой).

Строим отрезок, соединяющий две точки. Строим перпендикуляр, проходящий через середину отрезка. Находим пересечение этого перпендикуляра с осью x. Строим окружность с центром в точке пересечения, проходящую через данные точки (только верхнюю часть выше x).

Если эти две точки лежат на вертикальном луче, строим его (от оси x) , этот луч и будет искомой прямой.

Построение окружности с заданным центром, проходящей через точку

Построение окружности с центром в A, проходящей через точку B (случай, в котором точки A и B не лежат на одной вертикальной прямой).
Построение прямой, проходящей через A и B осуществляется как выше.
D – (евклидов) центр искомой окружности, гиперболическим центром той же окружности служит точка A.

Будем строить гиперболическую окружность с центром A, проходящую через точку B.

  • Если точки A и B не лежат на вертикальной прямой:

Строим гиперболическую прямую (полуокружность), проходящую через две заданные точки, как в предыдущем случае. Строим касательную к этой полуокружности в точке B. Проводим перпендикуляр к оси x через точку A. Находим пересечение этих двух прямых, чтобы получить центр D моделирующей окружности. Строим моделирующую окружность с центром в D, проходящую через заданную точку B.

  • Если точки A и B лежат на вертикальной прямой, и точка A лежит выше точки B:

Строим окружность вокруг пересечения вертикальной прямой и оси x, которая проходит через точку A. Строим горизонтальную прямую через точку B. Строим касательную к окружности в точке пересечения с этой горизонтальной прямой.

Середина отрезка между пересечением касательной с вертикальной прямой и B является центром моделирующей окружности. Строим моделирующую окружность вокруг центра, проходящую через точку B.

  • Если точки A и B лежат на вертикальной оси, и центр A лежит ниже точки B:

Строим окружность вокруг пересечения вертикальной прямой и осью x, которая проходит через заданный центр A. Строим касательную к окружности, проходящую через точку B. Строим горизонтальную прямую, проходящую через точку касания, и находим её пересечение с вертикальной прямой.

Средняя точка между полученной точкой пересечения и точкой является центром моделирующей окружности. Строим моделирующую окружность с новым центром и проходящую через точку B.

Найти центр заданной (гиперболической) окружности

Опускаем перпендикуляр p из евклидова центра окружности на ось x.

Пусть точка q является основанием этого перпендикуляра на ось x.

Строим прямую, касательную к окружности, проходящую через точку q.

Строим полуокружность h с центром в точке q, проходящую через точку касания.

Гиперболическим центром служит точка, в которой h и p пересекаютсяШаблон:Sfn.

Группы симметрии

Звёздчатая правильная семиугольная мозаика модели

Проективная линейная группа PGL(2,C) действует на римановой сфере преобразованиями Мёбиуса. Подгруппа, которая отображает верхнюю половину плоскости H в себя — это PSL(2,R), состоящая из преобразований с вещественными коэффициентами, которая действует транзитивно и изометрично на верхней половине плоскости, что делает её однородным пространством.

Есть четыре тесно связанные группы Ли, которые действуют на верхнюю половину плоскости дробно-линейными преобразованиями, сохраняющими гиперболическое расстояние.

  • Специальная линейная группа SL(2,R), которая состоит из 2×2 матриц с вещественными элементами и определителем +1. Заметьте, что многие тексты (включая Википедию) часто упоминают SL(2,R), подразумевая под этим PSL(2,R).
  • Группа S*L(2,R), состоящая из 2×2 матриц с вещественными элементами с определителем +1 или −1. Заметим, что SL(2,R) является подгруппой этой группы.
  • Проективная специальная линейная группа Шаблон:Не переведено 5 = SL(2,R)/{±E}, состоящая из матриц из SL(2,R) по модулю ± единичной матрицы (то есть это факторгруппа по группе, состоящей из +E и -E).
  • Группа PS*L(2,R) = S*L(2,R)/{±E}=PGL(2,R) является снова проективной группой и, снова, по модулю ±E. PSL(2,R) содержится в ней в качестве нормальной подгруппы с индексом два; другой класс смежности состоит из матриц 2×2 с вещественными элементами и определителем −1, опять же по модулю ±E.

Связь этих групп с моделью Пуанкаре следующая:

  • Группа всех движений H, иногда обозначаемая как Isom(H), изоморфна PS*L(2,R). Она включает как сохраняющие ориентацию движения, так и меняющие ориентацию. Меняющее ориентацию отображение (зеркальное отражение) — это zz.
  • Группа сохраняющих ориентацию движений H, иногда обозначаемая как Isom+(H), изоморфна PSL(2,R).

Важными подгруппами группы изометрии являются фуксовы группы.

Часто рассматривается модулярная группа SL(2,Z), которая важна в двух аспектах. Во-первых, это группа линейных преобразований плоскости, сохраняющих решётку точек. Таким образом, функции, периодичные на квадратной решётке, такие как модулярные формы и эллиптические функции, наследуют симметрию решётки SL(2,Z). Во-вторых, SL(2,Z) является, конечно, подгруппой SL(2,R), а следовательно, имеет гиперболическое поведение, заложенное в ней. В частности, SL(2,Z) можно использовать для замощения гиперболической плоскости ячейками равной площади.

Изометрическая симметрия

Действие проективной специальной линейной группы PSL(2,R) на H определяется как

(abcd)z=az+bcz+d=(ac|z|2+bd+(ad+bc)(z))+i(adbc)(z)|cz+d|2.

Заметим, что действие транзитивно, поскольку для любых z1,z2 существует элемент gPSL(2,), такой, что gz1=z2. Также верно, что если для всех z из H gz=z, то g = e.

Стабилизатор или стационарная подгруппа элемента z из H — это множество gPSL(2,), которые оставляют z неизменным — gz=z. Стабилизатор iгруппа вращения

SO(2)={(cosθsinθsinθcosθ):θ𝐑}.

Поскольку любой элемент z из H отображается в i некоторым элементом PSL(2,R), это означает, что стационарная группа любого элемента z изоморфна SO(2). Таким образом, H = PSL(2,R)/SO(2). Также расслоение касательных векторов единичной длины на верхней половине плоскости, называемое Шаблон:Не переведено 5, изоморфно PSL(2,R).

Верхняя половина плоскости замощается Шаблон:Не переведено 5 модулярной группой SL(2,Z).

Геодезические

Геодезические для метрического тензора являются полуокружностями с центрами на оси x и вертикальными лучами с началом на оси x.

Геодезические со скоростью единица, идущие вертикально через точку i, задаются выражением

γ(t)=(et/200et/2)i=iet.

Поскольку PSL(2,R) действует транзитивно на верхней половине плоскости путём изометрий, эта геодезическая отображается в другие геодезические при помощи действия PSL(2,R). Таким образом, геодезическая общего вида с единичной скоростью задаётся как

γ(t)=(abcd)(et/200et/2)i=aiet+bciet+d.

Это даёт полное описание геодезического потока расслоения касательных единичной длины (комплексное Шаблон:Не переведено 5) на верхней половине плоскости.

Модель в трёхмерных пространствах

Метрика модели в полупространстве

{x,y,z|z>0}

задаётся выражением

(ds)2=(dx)2+(dy)2+(dz)2z2,

где s измеряет расстояние вдоль (возможно) кривой линии. Прямые в гиперболическом пространстве (геодезические для этого метрического тензора, т.е. кривые, которые минимизируют расстояние), представляются в этой модели дугами окружностей, исходящих перпендикулярно от плоскости z = 0 (полуокружности, центры которых находятся на плоскости z = 0) и лучами, исходящими перпендикулярно от плоскости z = 0.

Расстояние между двумя точками измеряется в этой метрике вдоль геодезической и равно

dist(x1,y1,z1,x2,y2,z2)=arch(1+(x2x1)2+(y2y1)2+(z2z1)22z1z2)=
=2arsh((x2x1)2+(y2y1)2+(z2z1)22z1z2).

Модель в n-мерном пространстве

Модель можно обобщить до модели (n+1)-мерного пространства Лобачевского путём замены вещественных чисел x векторами в n-мерном евклидовом пространстве.

См.также

Шаблон:Colbegin

Шаблон:Colend

Примечания

Шаблон:Примечания

Литература

Шаблон:Refbegin

Шаблон:Refend