Ортодиагональный четырёхугольник

Материал из testwiki
Перейти к навигации Перейти к поиску
Ортодиагональный четырёхугольник. Согласно описанию этих четырёхугольников, два красных квадрата на двух противоположных сторонах четырёхугольника дают в сумме ту же площадь, что и два синих квадрата на другой паре сторон.

В евклидовой геометрии ортодиагональный четырёхугольник — это четырёхугольник, в котором диагонали пересекаются под прямым углом.

Специальные случаи

Дельтоид является ортодиагональным четырёхугольником, в котором одна диагональ является осью симметрии. Дельтоиды — это в точности ортодиагональные четырёхугольники, имеющие окружность, касающуюся всех четырёх сторон. Таким образом, дельтоиды являются описанными ортодиагональными четырёхугольникамиШаблон:Sfn.

Ромб — это ортодиагональный четырёхугольник с двумя парами параллельных сторон (т.е. ортодиагональный четырёхугольник и параллелограмм одновременно).

Квадрат — это частный случай ортодиагонального четырёхугольника, который является одновременно и дельтоидом, и ромбом.

Ортодиагональные равнодиагональные четырёхугольники, в которых диагонали не меньше любой стороны, имеют максимальный диаметр среди всех четырёхугольников, что решает случай n = 4 задачи наибольшего по площади многоугольника единичного диаметра. Квадрат является одним из таких четырёхугольников, но есть бесконечно много других.

Описание

Файл:Orthodiagonal quadrilateral C5.svg
Ортодиагональный четырёхугольник. Параллелограмм Вариньона выделен красным (M12 M23 M34 M41, где Mxy является серединой отрезка [Bx, By]).
Антимедиатрисы выделены синим (основанием антимедиатрисы, опущенной из Mxy является точка Axy).
Середины сторон и основания антимедиатрис лежат на одной окружности. На рисунке точка O — центр этой окружности.

Для любого ортодиагонального четырёхугольника суммы квадратов противоположных сторон равны — для сторон a, b, c и d мы имеемШаблон:SfnШаблон:Sfn:

a2+c2=b2+d2.

Это следует из теоремы Пифагора, по которой любая из этих двух сумм равна сумме четырёх квадратов расстояний от вершин четырёхугольника до точки пересечения диагоналей.

Обратно — любой четырёхугольник, в котором a2 + c2 = b2 + d2, должен быть ортодиагональным Шаблон:Sfn. Это можно показать разными путями, используя теорему косинусов, вектора, доказательство от противного и комплексные числа Шаблон:Sfn.

Диагонали выпуклого четырёхугольника перпендикулярны тогда и только тогда, когда бимедианы имеют одинаковую длинуШаблон:Sfn.

Диагонали выпуклого четырёхугольника ABCD перпендикулярны также тогда и только тогда, когда

PAB+PBA+PCD+PDC=π,

где P — точка пересечения диагоналей. Из этого равенства следует почти немедленно, что диагонали выпуклого четырёхугольника перпендикулярны также тогда и только тогда, когда проекции пересечения диагоналей на стороны четырёхугольника являются вершинами вписанного четырёхугольникаШаблон:Sfn.

Файл:Orthodiagonal quadrilateral C4.svg
Ортодиагональный четырёхугольник. Нормали к сторонам треугольника (перпендикуляры из точки пересечения диагоналей на стороны четырёхугольника) выделены синим цветом, точки K, L, M, N — основания нормалей.
Прямоугольник, образованный точками пересечения нормалей с противоположными сторонами, выделен красным цветом (вершины прямоугольника — R, S, T, U.
Основания нормалей и пересечения нормалей с противолежащими сторонами лежат на одной окружности. На рисунке точка O — центр этой окружности.

Выпуклый четырёхугольник ортодиагонален тогда и только тогда, когда его параллелограмм Вариньона (вершинами которого служат середины сторон) является прямоугольникомШаблон:Sfn. Также выпуклый четырёхугольник ортодиагонален тогда и только тогда, когда середины его сторон и основания четырёх антимедиатрис являются восемью Шаблон:Не переведено 5, окружности восьми точек. Центр этой окружности является центроидом четырёхугольника. Четырёхугольник, образованный основаниями антимедиатрис, называется главным орточетырёхугольникомШаблон:Sfn.

Если нормали к сторонам выпуклого четырёхугольника ABCD через пересечение диагоналей пересекают противоположные стороны в точках R, S, T, U, а K, L, M, N — основания нормалей, то четырёхугольник ABCD ортодиагонален тогда и только тогда, когда восемь точек K, L, M, N, R, S, T и U лежат на одной окружности, второй окружности восьми точек. Кроме того, выпуклый четырёхугольник ортодиагонален тогда и только тогда, когда четырёхугольник RSTU является прямоугольником, стороны которого параллельны диагоналям четырёхугольника ABCDШаблон:Sfn.

Файл:Orthodiagonal quadrilateral C3.svg
Ортодиагональный четырёхугольник. Нормали к сторонам треугольника выделены синим цветом, точки K, L, M, N — основания нормалей.
Медианы выделены красным. Основания медиан являются центрами описанных окружностей.

Есть несколько соотношений относительно четырёх треугольников, образованных точкой пересечения диагоналей P и вершинами выпуклого четырёхугольника ABCD. Обозначим через m1, m2, m3, m4 медианы в треугольниках ABP, BCP, CDP, DAP из P на стороны AB, BC, CD, DA соответственно. Обозначим через R1, R2, R3, R4 радиусы описанных окружностей, а через h1, h2, h3, h4высоты этих треугольников. Тогда четырёхугольник ABCD ортодиагонален тогда и только тогда, когда выполняется любое из следующих равенствШаблон:Sfn:

  • m12+m32=m22+m42
  • R12+R32=R22+R42
  • 1h12+1h32=1h22+1h42

Более того, четырёхугольник ABCD с точкой пересечения диагоналей P ортодиагонален тогда и только тогда, когда центры описанных вокруг треугольников ABP, BCP, CDP и DAP окружностей являются серединами сторон четырёхугольникаШаблон:Sfn.

Сравнение с описанным четырёхугольником

Некоторые числовые характеристики описанных четырёхугольников и ортодиагональных четырёхугольников очень похожи, что видно в следующей таблицеШаблон:Sfn. Здесь длины сторон четырёхугольника равны a, b, c, d, радиусы описанных окружностей вокруг треугольников равны R1, R2, R3, R4, а высоты равны h1, h2, h3, h4 (как на рисунке).

Описанный четырёхугольник Ортодиагональный четырёхугольник
a+c=b+d a2+c2=b2+d2
R1+R3=R2+R4 R12+R32=R22+R42
1h1+1h3=1h2+1h4 1h12+1h32=1h22+1h42

Площадь

Площадь K ортодиагонального четырёхугольника равна половине произведения длин диагоналей p и qШаблон:Sfn:

K=pq2.

Обратно — любой выпуклый четырёхугольник, площадь которого равна половине произведения диагоналей, ортодиагоналенШаблон:Sfn. Ортодиагональный четырёхугольник имеет наибольшую площадь среди всех выпуклых четырёхугольников с данными диагоналями.

Другие свойства

  • Только для ортодиагональных четырёхугольников площадь не определяется однозначно сторонами и углом между диагоналямиШаблон:Sfn. Например, если из двух ромбов со сторонами a (как у всех ромбов, у них диагонали перпендикулярны) один имеет меньший острый угол, то площади будут различными.
  • Если на сторонах любого четырёхугольника (выпуклого, вогнутого или самопересекающегося) нарисовать квадраты, то их центры будут вершинами ортодиагонального четырёхугольника (к тому же и равнодиагонального). Это утверждение носит название теоремы Ван-Обеля.

Свойства ортодиагонального вписанного четырёхугольника

Радиус описанной окружности и площадь

Пусть во вписанном в окружность ортодиагональном четырёхугольнике точка пересечения диагоналей делит одну из диагоналей на отрезки длиной p1 и p2, а другую — на отрезки длиной q1 и q2. Тогда (первое равенство в Утверждении 11 в книге Архимеда «Леммы»)

D2=p12+p22+q12+q22=a2+c2=b2+d2,

где Dдиаметр описанной окружности. Это выполняется для любых двух перпендикулярных хорд окружностиШаблон:Sfn. Из этой формулы вытекает выражение для радиуса описанной окружности

R=12p12+p22+q12+q22

или, в терминах сторон четырёхугольника,

R=12a2+c2=12b2+d2.

Отсюда также следует, что

a2+b2+c2+d2=8R2.

Тогда, согласно формуле Эйлера, радиус описанной окружности может быть выражен в терминах диагоналей p и q и расстоянию x между серединами диагоналей

R=p2+q2+4x28.

Формула для площади K вписанного ортодиагонального четырёхугольника в терминах четырёх сторон получается непосредственно, если скомбинировать теорему Птолемея и формулу площади ортодиагонального четырёхугольника.

K=12(ac+bd).

Другие свойства

  • Во вписанном ортодиагональном четырёхугольнике антицентр совпадает с точкой пересечения диагоналейШаблон:Sfn.
  • Теорема Брахмагупты утверждает, что для любого вписанного ортодиагонального четырёхугольника перпендикуляр к стороне, проходящий через точку пересечения диагоналей, делит пополам противоположную сторонуШаблон:Sfn.
  • Если ортодиагональный четырёхугольник является вписанным, расстояние от центра описанной окружности до любой стороны равно половине длины противоположной стороныШаблон:Sfn.
  • Во вписанном ортодиагональном четырёхугольнике расстояние между серединами диагоналей равно расстоянию между центром описанной окружности и точкой пересечения диагоналейШаблон:Sfn.
  • Ортодиагональный четырёхугольник, являющийся также равнодиагональным, является среднеквадратным четырёхугольником, поскольку его параллелограмм Вариньона является квадратом. Его площадь может быть выражена чисто в терминах сторон.

Прямоугольники вписанные в ортодиагональный четырехугольник

В любой ортодиагональный четырехугольник можно вписать бесконечно много прямоугольников, относящихся к следующим двум множествам:

(i) прямоугольники, чьи стороны параллельны диагоналям ортодиагонального четырехугольника
(ii) прямоугольники, определяемые окружностями точек Паскаля.[1][2][3]
ABCD - ортодиагональный четырехугольник, P1X1Z1Y1 и P2X2Z2Y2 прямоугольники, вписанные в ABCD, и стороны которых параллельны диагоналям четырехугольник.
ABCD - ортодиагональный четырехугольник. P1 и Q1 точки Паскаля, формируемые с помощью окружности ω1, σP1Q1 – окружность точек Паскаля, определяющая остальные вершины прямоугольника P1V1Q1W1 вписанного в ABCD. P2 и Q2 точки Паскаля, формируемые с помощью окружности ω2, σP2Q2 – окружность точек Паскаля, определяющая остальные вершины прямоугольника P2V2Q2W2 вписанного в ABCD.

Примечания

Шаблон:Примечания

Литература

Шаблон:Rq