Эллиптическое уравнение

Материал из testwiki
Перейти к навигации Перейти к поиску
Гармоническая функция на кольце — решение уравнения Лапласа

Эллиптические уравнения — класс дифференциальных уравнений в частных производных, описывающих стационарные процессы.

Определение

Рассмотрим общий вид скалярного дифференциального уравнения в частных производных второго порядка относительно функции u:RnR:

i=1nj=1naij2uxixj+k=1nbkuxk+cu=f(x1,,xn)

При этом уравнение записано в симметричном виде, то есть aij=aji. Тогда эквивалентное уравнение в виде квадратичной формы:

(AT)u+𝐛u+cu=f(x1,,xn),

где A=AT.
Матрица A называется матрицей главных коэффициентов.
Если все собственные значения матрицы A имеют одинаковый знак, то уравнение относят к эллиптическому типу[1].
Другое, эквивалентное определение: уравнение называется эллиптическим, если оно представимо в виде:

Lu=f(x1,,xn),

где L — эллиптический оператор.

Эллиптические уравнения противопоставляются параболическим и гиперболическим, хотя данная классификация не является исчерпывающей.

Решение эллиптических уравнений

Для аналитического решения эллиптических уравнений при заданных граничных условиях применяют метод разделения переменных Фурье, метод функции Грина и метод потенциалов.

Примеры эллиптических уравнений

В математической физике эллиптические уравнения возникают в задачах, сводящихся лишь к пространственным координатам: от времени либо ничего не зависит (стационарные процессы), либо оно каким-то образом исключается.

а также многие другие стационарные аналоги гиперболических и параболических уравнений.

См. также

Примечания

Шаблон:Примечания

Шаблон:Математическая физика