История тригонометрии

Материал из testwiki
Перейти к навигации Перейти к поиску

Шаблон:Аудиостатья введение История тригонометрии как науки о соотношениях между углами и сторонами треугольника и других геометрических фигур охватывает более двух тысячелетий. Большинство таких соотношений нельзя выразить с помощью обычных алгебраических операций, и поэтому понадобилось ввести особые тригонометрические функции, первоначально оформлявшиеся в виде числовых таблиц.

Историки полагают, что тригонометрию создали древние астрономы; немного позднее её стали использовать в геодезии и архитектуре. Со временем область применения тригонометрии постоянно расширялась, и в наши дни она включает практически все естественные науки, технику и ряд других областей деятельности[1]. Особенно полезными тригонометрические функции оказались при изучении колебательных процессов; на них основан также гармонический анализ функций и другие инструменты анализа. Томас Пейн в своей книге «Век Разума» (1794) назвал тригонометрию «душой науки»[2].

Ранний период

Древнекитайская иллюстрация к теореме Пифагора

Зачатки тригонометрии можно найти в математических рукописях древнего Египта, Вавилона и древнего Китая. 56-я задача из папируса Ринда (II тысячелетие до н. э.) предлагает найти наклон пирамиды, высота которой равна 250 локтей, а длина стороны основания — 360 локтей[3].

От вавилонской математики ведёт начало привычное нам измерение углов градусами, минутами и секундами (введение этих единиц в древнегреческую математику обычно приписывают Гипсиклу, II век до н. э.). Среди известных вавилонянам теорем была, например, такая: вписанный угол, опирающийся на диаметр круга — прямойШаблон:Sfn. Главным достижением этого периода стало соотношение, позже получившее имя теоремы Пифагора; Ван дер Варден считает, что вавилоняне открыли его между 2000 и 1786 годами до н. э.[4] Вполне возможно, что китайцы открыли его независимо (см. «Математика в девяти книгах»); неясно, знали ли общую формулировку теоремы древние египтяне, но прямоугольный «египетский треугольник» со сторонами 3, 4 и 5 был там хорошо известен и широко использовалсяШаблон:Sfn[5].

Древняя Греция

Общее и логически связное изложение тригонометрических соотношений появилось в древнегреческой геометрииШаблон:Sfn. Греческие математики ещё не выделяли тригонометрию как отдельную науку — для них она была частью астрономииШаблон:Sfn.

Плоская тригонометрия

Несколько теорем тригонометрического характера содержат «Начала» Евклида (IV век до н. э.). В первой книге «Начал» теоремы 18 и 19 устанавливают, что большей стороне треугольника соответствует больший противолежащий угол — и обратно, большему углу соответствует бо́льшая сторона. Теоремы 20 и 22 формулируют «неравенство треугольника»: из трёх отрезков можно составить треугольник тогда и только тогда, когда длина каждого меньше суммы длин двух других. Теорема 32 доказывает, что сумма углов треугольника равна 180°.

Во второй книге «Начал» теорема 12 представляет собой словесный аналог теоремы косинусовШаблон:Sfn: Шаблон:Начало цитаты В тупоугольных треугольниках квадрат на стороне, стягивающей тупой угол, больше [суммы] квадратов на сторонах, содержащих тупой угол, на дважды взятый прямоугольник, заключённый между одной из сторон при тупом угле, на которую падает перпендикуляр, и отсекаемым этим перпендикуляром снаружи отрезком при тупом угле. Шаблон:Конец цитаты Следующая за ней теорема 13 — вариант теоремы косинусов для остроугольных треугольников. Аналога теоремы синусов у греков не было, это важнейшее открытие было сделано гораздо позднее[6].

Прямоугольный треугольник Аристарха: взаимное расположение Солнца, Луны и Земли во время квадратуры

Дальнейшее развитие тригонометрии связано с именем астронома Аристарха Самосского (III век до н. э.). В его трактате «О величинах и расстояниях Солнца и Луны» ставилась задача об определении расстояний до небесных тел; эта задача требовала вычисления отношения сторон прямоугольного треугольника при известном значении одного из углов. Аристарх рассматривал прямоугольный треугольник, образованный Солнцем, Луной и Землёй во время квадратуры. Ему требовалось вычислить величину гипотенузы (расстояние от Земли до Солнца) через катет (расстояние от Земли до Луны) при известном значении прилежащего угла (87°), что эквивалентно вычислению значения sin3. По оценке Аристарха, эта величина лежит в промежутке от 1/20 до 1/18, то есть расстояние до Солнца в 20 раз больше, чем до ЛуныШаблон:Sfn; на самом деле Солнце почти в 400 раз дальше, чем Луна, ошибка возникла из-за неточности в измерении угла. Попутно Аристарх доказал неравенство, которое в современных терминах передаётся формулой:

sinαsinβ<αβ<tgαtgβ.

Это же неравенство содержится в «Исчислении песчинок» АрхимедаШаблон:Sfn. В трудах Архимеда (III век до н. э.) имеется важная теорема деления хорд, по существу эквивалентная формуле синуса половинного углаШаблон:Sfn[7]:

sinα2=1cosα2.

В течение всего периода развития античной науки главным полем для приложения результатов плоской тригонометрии у греков оставалась астрономия. Помимо задачи о вычислении расстояний, привлечения тригонометрии требовало определение параметров системы эпициклов и/или эксцентров, представляющих движение светила в пространстве. Согласно широко распространённому мнению, эта проблема впервые была сформулирована и решена Гиппархом (середина II века до н. э.) при определении элементов орбит Солнца и Луны; возможно, аналогичными задачами занимались и астрономы более раннего времени. Ему же часто приписывают авторство первых тригонометрических таблиц, не дошедших до насШаблон:Sfn. Впрочем, согласно некоторым реконструкциям, первые тригонометрические таблицы были составлены ещё в III веке до н. э., возможно, Аполлонием ПергскимШаблон:Sfn.

Синус угла θ/2 равен полухорде единичной окружности

Вместо современной функции синуса Гиппарх и другие древнегреческие математики обычно рассматривали зависимость длины хорды окружности от заданного центрального угла (или, что эквивалентно, от заданной дуги окружности, выраженной в угловой мере). В современной терминологии, длина хорды, стягивающей дугу θ единичной окружности, равна удвоенному синусу центрального угла θ/2. Это соответствие справедливо для любых углов: 0° < θ < 360°. На языке хорд были сформулированы первые открытые греками тригонометрические соотношения[1]. Например, современной формуле:

sin2α+cos2α=1

соответствовала у греков теоремаШаблон:Sfn:

(chordα)2+(chord180α)2=d2,

где chordα — хорда для центрального угла α, d — диаметр круга.

При этом радиус круга не считался равным единице, как сейчас. Например, у Гиппарха радиус круга предположительно считался равным R=3438 единиц — при таком определении длина дуги окружности была равна угловой мере этой дуги, выраженной в минутах: 360602π3438, и это облегчало вычисления. У Птолемея R=60 единиц. Согласно современным реконструкциямШаблон:Sfn Шаблон:Sfn, величины хорд у Гиппарха были протабулированы с интервалом 7°30'. Возможно, в основе вычисления таблицы Гиппарха лежал метод, разработанный Архимедом и восходящий ещё к АристархуШаблон:Sfn.

ABCD+BCAD=
=ACBD (теорема Птолемея)

Позднее астроном II века Клавдий Птолемей в «Альмагесте» дополнил результаты Гиппарха. Тринадцать книг «Альмагеста» — самая значимая тригонометрическая работа всей античности. В частности, «Альмагест» содержит обширные пятизначные таблицы хорд для острых и тупых углов, с шагом 30 угловых минут[1]. Для вычисления хорд Птолемей использовал (в главе X) теорему Птолемея (известную, впрочем, ещё Архимеду), которая утверждает: сумма произведений длин противоположных сторон выпуклого вписанного в круг четырёхугольника равна произведению длин его диагоналей. Из этой теоремы нетрудно вывести две формулы для синуса и косинуса суммы углов и ещё две для синуса и косинуса разности углов, однако общая формулировка этих теорем у греков отсутствуетШаблон:Sfn.

Основным достижением античной тригонометрической теории стало решение в общем виде задачи «решения треугольников», то есть нахождения неизвестных элементов треугольника, исходя из трёх заданных его элементов (из которых хотя бы один является стороной)[8]. Впоследствии эта задача и её обобщения стали основной задачей тригонометрии[1]: заданы несколько (обычно три) известных элементов треугольника, требуется найти остальные связанные с ним величины. Первоначально в число элементов треугольника (известных или неизвестных) включали стороны и углы при вершинах, позже к ним добавились медианы, высоты, биссектрисы, радиус вписанной или описанной окружности, положение центра тяжести и т. д. Прикладные тригонометрические задачи отличаются большим разнообразием — например, могут быть заданы измеримые на практике результаты действий над перечисленными величинами (к примеру, сумма углов или отношение длин сторон).

Сферическая тригонометрия

Параллельно с развитием тригонометрии плоскости греки, под влиянием астрономии, далеко продвинули сферическую тригонометрию. В «Началах» Евклида на эту тему имеется только теорема об отношении объёмов шаров разного диаметра, но потребности астрономии и картографии вызвали быстрое развитие сферической тригонометрии и смежных с ней областей — системы небесных координат, теории картографических проекций, технологии астрономических приборов (в частности, была изобретена астролябияШаблон:Sfn).

Историки не пришли к консенсусу насчёт степени развития у античных греков геометрии небесной сферы. Некоторые исследователи приводят доводы, что эклиптическая или экваториальная система координат использовалась для записи результатов астрономических наблюдений по меньшей мере уже во времена ГиппархаШаблон:Sfn. Возможно, тогда были известны и некоторые теоремы сферической тригонометрии, которые могли использоваться для составления звёздных каталоговШаблон:Sfn и в геодезии.

Первые известные нам труды по «Сферике» (то есть сферической геометрии, с ясным астрономическим уклоном) написалиШаблон:Sfn:

(IV век до н. э.) Автолик из Питаны и Евклид («Феномены»).
(II век до н. э.) Феодосий и Гипсикл.

Некоторые разобранные в этих сочинениях задачи носят тригонометрический характер, однако из-за слабой разработанности теории авторы ещё применяют обходные пути. Например, задачу «найти время полного восхода (захода) зодиакального созвездия» Гипсикл решает приближённо с помощью многоугольных чисел[9].

Сферический треугольник

Решающим этапом в развитии теории стала монография «Сферика» в трёх книгах, которую написал Менелай Александрийский (около 100 года н. э.). В первой книге он изложил теоремы о сферических треугольниках, аналогичные теоремам Евклида о плоских треугольниках (см. I книгу «Начал»). Историки считают, что подход Менелая во многом опирается на труды Феодосия, которые у Менелая существенно расширены и приведены в систему. По сообщению Паппа, Менелай первым ввёл понятие сферического треугольника как фигуры, образованной отрезками больших круговШаблон:Sfn. Менелай доказал теорему, для которой у Евклида нет плоского аналога: два сферических треугольника конгруэнтны (совместимы), если соответствующие углы равны. Другая его теорема утверждает, что сумма углов сферического треугольника всегда больше 180°[10].

Вторая книга «Сферики» излагает применение сферической геометрии к астрономии. Третья книга содержит важную для практической астрономии теорему Менелая, известную как «правило шести величин»Шаблон:Sfn. Две другие открытые Менелаем фундаментальные теоремы впоследствии получили названия «правило четырёх величин» и «правило тангенсов»[10].

Несколько десятилетий спустя Клавдий Птолемей в своих трудах «География», «Аналемма» и «Планисферий» даёт подробное изложение тригонометрических приложений к картографии, астрономии и механике. Среди прочего, описана стереографическая проекция, исследованы несколько практических задач, например: определить высоту и азимут небесного светила по его склонению и часовому углу. С точки зрения тригонометрии, это значит, что надо найти сторону сферического треугольника по другим двум сторонам и противолежащему углуШаблон:Sfn.

Сферической геометрии Птолемей посвятил также XIII главу в первой книге «Альмагеста»; в отличие от Менелая, Птолемей не привёл доказательств многих утверждений, но зато уделил много внимания алгоритмам, пригодным для практических вычислений в астрономии. Опорной конструкцией, вместо плоских хорд, в «Альмагесте» служит «четырёхсторонник Менелая». Для «решения» прямоугольного сферического треугольника, то есть для вычисления его характеристик, Птолемей привёл в словесной записи 4 теоремы; в современных обозначениях они имеют вид (угол C прямой)Шаблон:Sfn:

sina=sincsinA (частный случай сферической теоремы синусов)
tga=sinbtgA
cosc=cosacosb (частный случай сферической теоремы косинусов)
tgb=tgccosA

Поясним, что в сферической геометрии принято измерять стороны треугольника не линейными единицами, а величиной опирающихся на них центральных углов. В современной сферической тригонометрии приводятся ещё два соотношения:

cosA=cosasinB (тоже вытекает из сферической теоремы косинусов)
cosc=ctgActgB

У Птолемея они отсутствуют, поскольку их нельзя вывести из теоремы Менелая[11].

Средневековье

Индия

В IV веке, после упадка античной науки, центр развития математики переместился в Индию. Сочинения индийских математиков (сиддханты) показывают, что их авторы были хорошо знакомы с трудами греческих астрономов и геометровШаблон:Sfn. Чистой геометрией индийцы интересовались мало, но их вклад в прикладную астрономию и расчётные аспекты тригонометрии очень значителен.

Определение тригонометрических функций в средневековой математике

В первую очередь индийцы изменили некоторые концепции тригонометрии, приблизив их к современным. Они провели замену античных хорд на синусы (название «синус» восходит к слову «тетива» на санскритеШаблон:Sfn) в прямоугольном треугольнике. Тем самым в Индии было положено начало тригонометрии как общему учению о соотношениях в треугольнике, хотя, в отличие от греческих хорд, индийский подход ограничивался только функциями острого углаШаблон:Sfn.

Синус индийцы определяли несколько иначе, чем в современной математике (см. рис. справа): под синусом понималась длина отрезка AD, опирающегося на дугу AC окружности радиуса R=3438 единиц (как у Гиппарха). Таким образом, «индийский синус» угла в 3438 раз больше современного синуса и имел размерность длины[12]. Из этого правила были исключения; например, Брахмагупта по неясным причинам принял радиус равным 3270 единицШаблон:Sfn.

Индийцы первыми ввели в использование косинус. Использовался ещё так называемый обращённый синус, или синус-верзус, равный длине отрезка DC на рисунке справаШаблон:Sfn.

Как и у греков, тригонометрия индийцев развивалась главным образом в связи с её астрономическими приложениями, в основном для использовании в теории движения планет и для изучения небесной сферы. Это свидетельствует о хорошем знании сферической тригонометрии «Альмагеста» и «Аналеммы», однако ни одной их собственной работы, развивающей теорию этого раздела тригонометрии, не обнаруженоШаблон:Sfn. Тем не менее в разработке прикладных алгоритмов решения астрономических задач индийцы достигли больших успехов[13]. Например, в «Панча-сиддхантике» Варахамихиры (VII в.) даётся оригинальное решение астрономической задачи, описанной у Птолемея: найти высоту Солнца над горизонтом, если известны широта местности, склонение Солнца и его часовой угол. Автор для решения применяет аналог теоремы косинусовШаблон:Sfn, он же впервые привёл формулу для синуса половинного углаШаблон:Sfn.

Статуя Ариабхаты. Индийский межуниверситетский центр астрономии и астрофизики (IUCAA)

Для астрономических расчётов был составлен ряд тригонометрических таблиц. Первые (четырёхзначные) таблицы синусов приведены в древней «Сурья-сиддханте» и у Ариабхаты («Ариабхатия», V век). Таблицы Ариабхаты содержат 24 значения синусов и синус-верзусов с интервалом 3°45' (половина шага таблиц у Гиппарха).

Важный вклад в развитие тригонометрии внес Брахмагупта (VII в.), открывший интерполяционную формулу, которая позволила ему получить значения синуса на основе небольшого количества известных значений этой функции[14]. Кроме того, индийцы знали формулы для кратных углов sinnφ, cosnφ для n=2,3,4,5. В «Сурья-сиддханте» и в трудах Брахмагупты при решении задач фактически используется сферический вариант теоремы синусов, однако общая формулировка этой теоремы в Индии так и не появиласьШаблон:Sfn. Историки нашли в индийских трудах неявное использование тангенсов, но важность этого понятия была осознана только позже, математиками исламских стран[13].

В трудах другого выдающегося ученого, Бхаскары II (XII век), приводятся формулы для синуса и косинуса суммы и разности углов:

sin(α±β)=sinαcosβ±cosαsinβ,

а также формула для малого приращения синуса:

sinαsinβ(αβ)cosβ

(при αβ), соответствующая современному выражению для дифференциала синуса. Опираясь на формулу синуса суммы, Бхаскара опубликовал более точные и подробные, чем у Ариабхаты, тригонометрические таблицы с шагом 1°Шаблон:Sfn.

В XI веке мусульмане (Махмуд Газневи) захватили и разорили Северную Индию. Культурные центры переместились в Южную Индию, где образуется так называемая «керальская школа астрономии и математики» (по названию современного штата Керала на юге Индии)[15]. В XV—XVI веках математики Кералы в ходе астрономических исследований добились больших успехов в области суммирования бесконечных числовых рядов, в том числе для тригонометрических функций[16]. В анонимном трактате «Каранападдхати» («Техника вычислений») даны правила разложения синуса и косинуса в бесконечные степенные ряды[17], восходящие, вероятно, к основателю этой школы астроному Мадхаве из Сангамаграмы (1-я половина XV века)Шаблон:Sfn. Мадхава и его последователь Нилаканта (в трактате «Taнтpacaнrpaха») приводят также правила разложения арктангенса в бесконечный степенной ряд. В Европе к подобным результатам подошли лишь в XVII—XVIII веках. Так, ряды для синуса и косинуса вывел Исаак Ньютон около 1666 года, а ряд арктангенса был найден Дж. Грегори в 1671 году и Г. В. Лейбницем в 1673 годуШаблон:Sfn.

Исламские страны

В VIII веке учёные стран Ближнего и Среднего Востока познакомились с трудами древнегреческих и индийских математиков и астрономов. Переводом их на арабский язык занимались такие крупные учёные VIII века, как Ибрахим Ал-Фазари и Якуб ибн Тарик. Далее они и их последователи стали активно комментировать и развивать эти теории. Опорной конструкцией у исламских учёных, как и у индийцев, был синус в треугольнике, или, что то же самое, полухорда в круге[18].

Их астрономические трактаты, аналогичные индийским сиддхантам, назывались «зиджи»; типичный зидж представлял собой сборник астрономических и тригонометрических таблиц, снабжённый руководством по их использованию и (не всегда) изложением общей теорииШаблон:Sfn. Сравнение зиджей периода VIII—XIII веков показывает быструю эволюцию тригонометрических знаний. Предметом особого внимания ученых стран ислама была сферическая тригонометрия, методы которой использовались для решения задач астрономии и геодезииШаблон:Sfn. Среди основных решаемых проблем были следующиеШаблон:Sfn[19].

 — Точное определение времени суток.
 — Вычисление будущего расположения небесных светил, моментов их восхода и заката, затмений Солнца и Луны.
 — Нахождение географических координат текущего места.
 — Вычисление расстояния между городами с известными географическими координатами.
 — Определение направления на Мекку (кибла) из заданного места.
Определение тангенса, котангенса, секанса и косеканса в средневековой арабской математике. Отрезок AD — гномон (вертикальный вверху или горизонтальный внизу), отрезок OD — его тень

Самые ранние из сохранившихся трудов принадлежат ал-Хорезми и ал-Марвази (IX век), которые рассмотрели, наряду с известными ещё индийцам синусом и косинусом, новые тригонометрические функции: тангенс, котангенс, секанс и косеканс[20]. Изначально эти функции определялись иначе, чем в современной математике. Так, под котангенсом понималась длина тени от вертикального гномона высотой 12 (иногда 7) единиц; первоначально эти понятия использовались для расчёта солнечных часов. Тангенсом называлась тень от горизонтального гномона. Косекансом и секансом назывались гипотенузы соответствующих прямоугольных треугольников (отрезки AO на рисунке справа)Шаблон:Sfn. Лишь в X веке философ и математик ал-Фараби в своих комментариях к «Альмагесту» ввёл независимые от гномоники определения этих четырёх функций, определив их через синус и косинус в тригонометрическом круге птолемеевского радиуса (60 единиц). Основные соотношения между всеми шестью функциями привёл ал-Баттани в том же столетии. Окончательной унификации добился Абу-л-Вафа во второй половине X века, который впервые использовал для определения тригонометрических функций круг единичного радиуса, как это делается в современной математике.

Сабит ибн Курра (IX век) и ал-Баттани (X век) первыми открыли фундаментальную теорему синусов для частного случая прямоугольного сферического треугольника. Для произвольного сферического треугольника доказательство было найдено (разными способами и, вероятно, независимо друг от друга) Абу-л-Вафой, ал-Худжанди и ибн Ираком в конце X векаШаблон:Sfn. В другом трактате ибн Ирака сформулирована и доказана теорема синусов для плоского треугольникаШаблон:Sfn.

Сферическая теорема косинусов в общем виде сформулирована в странах ислама не была, однако в трудах Сабита ибн Курры, ал-Баттани и других астрономов имеются эквивалентные ей утверждения. Вероятно, поэтому Региомонтан, впервые давший общую формулировку этой важного соотношения (XV век), назвал его «теоремой Альбатегния» (так тогда в Европе называли ал-Баттани)Шаблон:Sfn.

Ибн Юнис (X век) открыл преобразование произведения тригонометрических функций в суммуШаблон:Sfn, например:

sinαsinβ=cos(αβ)cos(α+β)2,

Формулы преобразования позволяли заменить трудоёмкое умножение на более простое сложение или вычитание. Впоследствии в Европе эти же формулы использовали для противоположной цели — замены сложения и вычитания на умножение, чтобы затем для вычисления результата применить логарифмические таблицы[21].

Одной из важнейших задач науки того времени являлось составление тригонометрических таблиц с как можно меньшим шагом. В IX веке ал-Хорезми составил таблицы синусов с шагом 1°, его современник Хаббаш аль-Хасиб (ал-Марвази) добавил к ним первые таблицы тангенсов, котангенсов и косекансов (с тем же шагом)[20]. В начале X века ал-Баттани опубликовал таблицы с шагом 30', в конце того же столетия Ибн Юнис составил таблицы с шагом 1'Шаблон:Sfn. При составлении таблиц ключевым было вычисление значения sin1. Искусные методы для вычисления этой величины изобрели Ибн Юнис, Абу-л-Вафа, ал-Бируни. Наибольшего успеха добился в XV веке ал-Каши; в одной из своих работ он подсчитал, что sin10,017452406437283571 (все знаки верны). В составленных при его участии «Астрономических таблицах» Самаркандской обсерватории Улугбека таблицы синусов вычислены с шестью шестидесятеричными знакамиШаблон:Sfn, с шагом 1'. Султан Улугбек лично участвовал в этой работе: он написал специальный трактат о вычислении синуса угла в 1°.

Ал-Бируни на иранской марке 1973 г.

Первым специализированным трактатом по тригонометрии было сочинение среднеазиатского учёного ал-Бируни (X—XI век) «Книга ключей науки астрономии» (995—996 годы). Целый курс тригонометрии содержал главный труд ал-Бируни — «Канон Мас‘уда» (книга III). В дополнение к таблицам синусов (с шагом 15') Ал-Бируни дал таблицы тангенсов (с шагом 1°). Идеологически труды Бируни близки к птолемеевским — на языке хорд он формулирует теоремы о синусе удвоенного и половинного угла, синусе суммы и разности угловШаблон:Sfn. Среди приложений книга Ал-Бируни показывает построение правильного вписанного девятиугольника и приближённое вычисление длины его стороны; этот алгоритм он использует для нахождения sin1. В другом труде, «Геодезия», Бируни сообщил результаты собственных измерений длины земного меридиана, из которых следует оценка радиуса Земли, близкая к истинной (в пересчёте к метрической системе, Бируни получил 6340 км)Шаблон:Sfn.

Фундаментальное изложение тригонометрии как самостоятельной науки (как плоской, так и сферической) дал персидский математик и астроном Насир ад-Дин ат-Туси в 1260 году[22]. Его «Трактат о полном четырёхстороннике» содержит практические способы решения типичных задач, в том числе труднейших, решенных самим ат-Туси — например, построение сторон сферического треугольника по заданным трём угламШаблон:Sfn. Приведена теорема тангенсов для сферических треугольников, описано важное понятие полярного треугольника (впервые использованное в XI веке Ибн Ираком и ал-Джайяни). Сочинение ат-Туси стало широко известно в Европе и существенно повлияло на развитие тригонометрии.

Таким образом, к концу XIII века были открыты базовые теоремы, составляющие содержание тригонометрии:

 — Выражение любой тригонометрической функции через любую другую.
 — Формулы для синусов и косинусов кратных и половинных углов, а также для суммы и разности углов.
 — Теоремы синусов и косинусов.
 — Решение плоских и сферических треугольников

Из-за отсутствия алгебраической символики все перечисленные теоремы выражались в громоздкой словесной форме, но по существу были полностью эквивалентны современному их пониманию.

Европа

Файл:Geometry XVII century.gif
Геодезические измерения (XVII век)

После того как арабские трактаты были в XII—XIII веках переведены на латынь, многие идеи индийских и персидских математиков стали достоянием европейской науки. По всей видимости, первое знакомство европейцев с тригонометрией состоялось благодаря зиджу ал-Хорезми, два перевода которого были выполнены в XII веке. Первоначально сведения о тригонометрии (правила её использования, таблицы некоторых тригонометрических функций) приводились в сочинениях по астрономии, однако в сочинении Фибоначчи «Практика геометрии», написанном около 1220 года, тригонометрия излагается как часть геометрии. Первым европейским сочинением, целиком посвященным тригонометрии, часто называют «Четыре трактата о прямых и обращенных хордах» английского астронома Ричарда Уоллингфордского (около 1320 г.). Книга содержит доказательство ряда тригонометрических тождеств и оригинальный метод вычисления синусов. Примерно в те же годы был написан трактат еврейского математика Леви бен Гершома (Герсонида) «О синусах, хордах и дугах», переведённый на латинский язык в 1342 году[23]. Книга содержит доказательство теоремы синусов и пятизначные таблицы синусов[24]. Тригонометрия затрагивается в «Теоретической геометрии» английского математика Томаса Брадвардина (написана в первой половине XIV в., опубликована в 1495 году). Тригонометрические таблицы, чаще переводные с арабского, но иногда и оригинальные, содержатся в сочинениях ряда других авторов XIV—XV веков. Тогда же тригонометрия заняла место среди университетских курсов.

Крупным достижением стала монография Региомонтана «Пять книг о треугольниках всех видов» (опубл. 1462—1464), в которой были сведены все известные к этому моменту знания по плоской и сферической тригонометрии и приложены семизначные таблицы синусов (с шагом 1') и тангенсов (с шагом 1°). Немаловажно и то, что в таблицах Региомонтана, в нарушение астрономической традиции, впервые использовалась десятичная система (а не архаичная шестидесятеричная). Радиус тригонометрического круга Региомонтан принял равным 107, чтобы табличные значения были представлены целыми числами (десятичные дроби вошли в обиход несколько позднее, причём мощным стимулом к их применению стали именно тригонометрические вычисленияШаблон:Sfn).

По сравнению с трактатом ат-Туси сочинение Региомонтана существенно полнее, оно содержит ряд новых задач, решённых оригинальными методами. Например, показывается, как построить треугольник, если известны одна его сторона, длина опущенной на неё высоты и противолежащий уголШаблон:Sfn.

Новое время

Фердинанд Бол. Портрет математика (1658). Диаграмма на стене показывает тригонометрические функции, определённые через окружность единичного радиуса

XVI—XVII века

Развитие тригонометрии в Новое время стало чрезвычайно важным не только для астрономии и астрологии, но и для других приложений, в первую очередь артиллерии, оптики и навигации при дальних морских путешествиях. Поэтому после XVI века этой темой занимались многие выдающиеся учёные, в том числе Николай Коперник, Иоганн Кеплер, Франсуа Виет[25]. Коперник посвятил тригонометрии две главы в своём трактате «О вращении небесных сфер» (1543). Вскоре (1551) появились 15-значные тригонометрические таблицы Ретика, ученика Коперника, с шагом 10"Шаблон:Sfn. Кеплер опубликовал труд «Оптическая часть астрономии» (1604).

Потребность в сложных тригонометрических расчётах вызвала в начале XVII века открытие логарифмов, причём первые логарифмические таблицы Джона Непера содержали только логарифмы тригонометрических функций. Среди других открытий Непера — эффективный алгоритм решения сферических треугольников, получивший название «формулы аналогии Непера»[26].

Термин «тригонометрия» как название математической дисциплины ввёл в употребление немецкий математик Б. Питискус, опубликовавший в 1595 году книгу «Тригонометрия, или краткий и ясный трактат о решении треугольников» (Шаблон:Lang-lat). К концу XVII века появились современные названия тригонометрических функций. Термин «синус» впервые употребил около 1145 года английский математик и арабист Роберт Честерский[12]. Региомонтан в своей книге назвал косинус «синусом дополнения» (Шаблон:Lang-lat), поскольку cosx=sin(90x); его последователи в XVII веке сократили это обозначение до co-sinus (Эдмунд Гунтер)Шаблон:Sfn, а позднее — до cos (Уильям Отред). Названия тангенса и секанса предложил в 1583 году датский математик Томас Финке[25], а упомянутый выше Эдмунд Гунтер ввёл названия котангенса и косеканса. Термин «тригонометрические функции» впервые употребил в своей «Аналитической тригонометрии» (1770) Георг Симон КлюгельШаблон:Sfn.

Стандартные обозначения в треугольнике

Томас Финке предложил оригинальное решение геодезической задачи: найти углы треугольника, если известна их сумма α+β и отношение противолежащих сторон a:b. Для решения Финке использовал формулу Региомонтана (см. рисунок)Шаблон:Sfn:

a+bab=tgα+β2tgαβ2

Виет в первой части своего «Математического канона» (1579) поместил разнообразные таблицы, в том числе тригонометрические, а во второй части дал обстоятельное и систематическое, хотя и без доказательств, изложение плоской и сферической тригонометрии. В 1593 году Виет подготовил расширенное издание этого капитального труда. «Несомненно, что самый интерес его к алгебре первоначально был вызван возможностью приложений к тригонометрии и астрономии»Шаблон:Sfn. Другой важной заслугой Виета стало применение в тригонометрии разработанной им общей алгебраической символики; если ранее решение задачи понималось как геометрическое построение, то начиная с работ Виета приоритет начинает переходить к алгебраическим вычислениямШаблон:Sfn. Появление символики позволило записать в компактном и общем виде тригонометрические тождества — например, формулы для кратных угловШаблон:Sfn:

cosmα=cosmαm(m1)12cosm2αsin2α+
sinmα=mcosm1αsinαm(m1)(m2)123cosm3αsin3α+

Надо оговориться, что сам Виет ещё дал эти формулы частично в словесном описании, но при этом ясно указал на связь коэффициентов формул с биномиальными коэффициентами и привёл таблицу их значений для небольших значений m[27].

Из других достижений ВиетаШаблон:Sfn: в работе «Дополнение к геометрии» Виет указал тригонометрический способ решения кубического уравнения для самого трудного в тот период — неприводимого — случая (стандартная формула требует умения работать с корнями из комплексных чисел). Виет дал первое в истории бесконечное произведение:

2π=cos902cos904cos908
Измерение высоты

Кроме артиллерии и навигации, тригонометрия быстро развивалась и в таких классических областях её применения, как геодезия. Широкое применение тангенсов объяснялось, в частности, простотой измерения с их помощью высоты горы или здания (см. рисунок):

h=tgα tgβtgβtgαl

В 1615 году «Снеллиус нашёл решение задачи Снеллиуса-Потенота»: найти точку, из которой стороны данного (плоского) треугольника видны под заданными углами. Он открыл закон преломления света: для заданных исходной и преломляющей среды отношение синусов угла падения и угла преломления постоянно. Тем самым Снеллиус открыл дорогу новым применениям тригонометрических функций в оптике, а изобретение в эти же годы первых телескопов придало этому открытию особую важность.

Синусоида в книге Альбрехта Дюрера (1525)

Первый график синусоиды появился в книге Альбрехта Дюрера «Руководство к измерению циркулем и линейкой» (Шаблон:Lang-de, 1525 год)[28]. В 1630-х годах Жиль Роберваль, в ходе своих исследований циклоиды, независимо вычертил синусоидуШаблон:Sfn, он же опубликовал формулу тангенса двойного углаШаблон:Sfn. Джон Валлис в своей «Механике» (1670), опередив своё время, правильно указал знаки синуса во всех квадрантах и указал, что у синусоиды бесконечно много «оборотов». График тангенса для первого квадранта впервые начертил Джеймс Грегори (1668)Шаблон:Sfn.

Во второй половине XVII века началось стремительное развитие общей теории квадратур (то есть вычисления площади), завершившееся появлением в конце века математического анализа. Для тригонометрических функций важные результаты в начале этого периода получил Блез Паскаль (опубликованы в его книге «Письма А. Деттонвилля о некоторых его геометрических открытиях», 1659 год). В современной терминологии, Паскаль вычислил интегралы от натуральных степеней синуса и косинуса и некоторые связанные с нимиШаблон:Sfn, а также отметил, что d(sinx)=cosx dx. Работы в области тригонометрии проводили такие крупные математики XVII века, как Отред, Гюйгенс, Озанам, Валлис. Заметным процессом во второй половине XVII века стала постепенная алгебраизация тригонометрии, совершенствование и упрощение её символики (хотя до Эйлера символика была всё же гораздо более громоздка, чем современная)Шаблон:Sfn.

XVIII век

После открытия математического анализа сначала Джеймс Грегори, а затем Исаак Ньютон получили разложение тригонометрических функций (а также обратных к ним) в бесконечные ряды. Ньютон посвятил проблемам геометрии и тригонометрии 10 задач в своей книге «Универсальная арифметика»Шаблон:Sfn. Например, в задаче X требуется «решить треугольник», если известны одна его сторона, противолежащий угол и сумма двух других сторон. Предложенный Ньютоном метод решения представляет собой одну из формул МольвейдеШаблон:Sfn.

Лейбниц строго доказал, что sinx не может быть, вообще говоря, алгебраически выражен через x, то есть, в современной терминологии, тригонометрические функции трансцендентныШаблон:Sfn.

Важными открытиями в начале XVIII века стали:

 — Открытие и широкое распространение радианной меры углов[29] (Роджер Котс, 1714). Сам термин «радиан» появился позднее, его в 1873 году предложил английский инженер Джеймс ТомсонШаблон:Sfn.
 — Тригонометрическое представление комплексного числа и формула Муавра.
(cosφ+isinφ)n=cosnφ+isinnφ 
 — Начало использования (Ньютон и Грегори) полярной системы координат, связанной с декартовой тригонометрическими соотношениями; в общее употребление эти координаты ввёл Эйлер (1748)Шаблон:Sfn.

В 1706 году швейцарский математик Якоб Герман опубликовал формулы для тангенса суммы и тангенса кратных углов, а Иоганн Ламберт в 1765 году нашёл чрезвычайно полезные формулы, выражающие разные тригонометрические функции через тангенс половинного углаШаблон:Sfn. Исследуя гиперболические функции (1761), Ламберт показал, что их свойства аналогичны свойствам тригонометрических; причину этого ещё в 1707 году обнаружил Муавр: при замене вещественного аргумента на мнимый круг переходит в гиперболу, а тригонометрические функции — в соответствующие гиперболическиеШаблон:Sfn.

Немецкий математик Шаблон:Нп3 в книге «Анализ треугольников» (1746) опубликовал в современной записи обе формулы МольвейдеШаблон:Sfn.

В книге «Полигонометрия» (1789) Симон Люилье обобщил тригонометрические соотношения для треугольников, дав их аналоги для произвольных многоугольников, включая пространственные. В работах на эту тему Люилье привёл основную теорему полигонометрии: площадь каждой грани многогранника равна сумме произведений площадей остальных граней на косинусы углов, образуемых ими с первой гранью. Он рассмотрел способы «решения многоугольников» с n сторонами при различных постановках задачи: заданы n1 сторона и n2 угла, или все углы и n2 стороны, или все стороны и n3 углаШаблон:Sfn.

В 1798 году Лежандр доказал, что если размеры сферического треугольника малы по сравнению с радиусом сферы, то при решении тригонометрических задач можно применять формулы плоской тригонометрии, вычтя при этом из каждого угла треть сферического избытка[30].

Манера обозначать обратные тригонометрические функции с помощью приставки arc (от Шаблон:Lang-lat — дуга) появилась у австрийского математика Карла Шерфера (Karl Scherffer, 1716—1783) и закрепилась благодаря Лагранжу. Имелось в виду, что, например, обычный синус позволяет по дуге окружности найти стягивающую её хорду, а обратная функция решает противоположную задачу. Английская и немецкая математические школы до конца XIX века предлагали иные обозначения: sin1,1sin, но они не прижилисьШаблон:Sfn.

Реформы Леонарда Эйлера

Леонард Эйлер

Современный вид тригонометрии придал Леонард Эйлер. В трактате «Введение в анализ бесконечных» (1748) Эйлер дал определение тригонометрических функций, эквивалентное современному[31], и соответственно определил обратные функции. Если его предшественники понимали синус и прочие понятия геометрически, то есть как линии в круге или треугольнике, то после работ Эйлера sinx,cosx,tgx и т. д. стали рассматриваться как безразмерные аналитические функции действительного и комплексного переменного. Для комплексного случая он установил связь тригонометрических функций с показательной функцией (формула Эйлера). Подход Эйлера с этих пор стал общепризнанным и вошёл в учебники.

Эйлер рассматривал как допустимые отрицательные углы и углы, большие 360°, что позволило определить тригонометрические функции на всей вещественной числовой прямой, а затем продолжить их на комплексную плоскость. Когда встал вопрос о распространении тригонометрических функций на тупые углы, знаки этих функций до Эйлера нередко выбирались ошибочно; многие математики считали, например, косинус и тангенс тупого угла положительными[32]. Эйлер определил эти знаки для углов в разных координатных квадрантах, исходя из формул приведенияШаблон:Sfn.

Эйлер впервые представил разложение тригонометрических функций в бесконечные произведения (1734), откуда вывел ряды для их логарифмовШаблон:Sfn.

В других трудах, в первую очередь «Основания сферической тригонометрии, выведенные из метода максимумов и минимумов» (1753) и «Всеобщая сферическая тригонометрия, кратко и ясно выведенная из первых оснований» (1779), Эйлер впервые дал полное систематическое изложение сферической тригонометрии на аналитическом основанииШаблон:Sfn, причём многие крупные результаты принадлежат самому Эйлеру.

В середине XVIII века разгорелся важнейший по своим последствиям «спор о струне»[33]. Эйлер в полемике с Даламбером предложил более общее определение функции, чем принималось ранее; в частности, функция может быть задана тригонометрическим рядом. В своих трудах Эйлер использовал несколько представлений алгебраических функций в виде ряда из кратных аргументов тригонометрических функций, напримерШаблон:Sfn:

πx2=sinx+sin2x2+sin3x3

Общей теорией тригонометрических рядов Эйлер не занимался и сходимость полученных рядов не исследовал, но получил несколько важных результатов. В частности, он вывел разложения целых степеней синуса и косинуса[34].

Тригонометрия в России

В России первые сведения о тригонометрии были опубликованы в сборнике «Таблицы логарифмов, синусов и тангенсов к изучению мудролюбивых тщателей», опубликованном при участии Л. Ф. Магницкого в 1703 году[35]. В 1714 году появилось содержательное руководство «Геометрия практика», первый русский учебник по тригонометрии, ориентированный на прикладные задачи артиллерии, навигации и геодезии[36]. Завершением периода освоения тригонометрических знаний в России можно считать фундаментальный учебник академика М. Е. Головина (ученика Эйлера) «Плоская и сферическая тригонометрия с алгебраическими доказательствами» (1789).

В конце XVIII века в Петербурге возникла авторитетная тригонометрическая школа (А. И. Лексель, Н. И. Фусс, Ф. И. Шуберт), которая внесла большой вклад в плоскую и сферическую тригонометрию[37].

XIX—XXI века

В начале XIX века Н. И. Лобачевский добавил к плоской и сферической тригонометрии третий раздел — гиперболическую (для геометрии Лобачевского, первую работу в этой области опубликовал Ф. А. Тауринус в 1826 году). Лобачевский показал, что формулы сферической тригонометрии переходят в формулы гиперболической тригонометрии при замене длин сторон треугольника a, b, c на мнимые величины: ai, bi, ci — или, что эквивалентно, при замене тригонометрических функций на соответствующие гиперболические[38].

В XIX—XX веках бурное развитие получили теория тригонометрических рядов и связанные с ней области математики: гармонический анализ, теория случайных процессов, кодирование аудио и видеоинформации и другие. Ещё Даниил Бернулли высказал убеждение, что любую (непрерывную) функцию на заданном промежутке можно представить тригонометрическим рядомШаблон:Sfn. Дискуссии продолжались до 1807 года, когда Фурье опубликовал теорию представления произвольных кусочно-аналитических функций тригонометрическими рядами (окончательный вариант содержится в его «Аналитической теории тепла», 1822)[33]. Для разложения функции f(x) в ряд:

f(x)=a0+n=1(ancosnx+bnsinnx).

Фурье привёл интегральные формулы расчёта коэффициентов[33]:

an=1π02πf(x)cosnxdx(n=0,1,2,);bn=1π02πf(x)sinnxdx(n=1,2,3,)

Изложение Фурье не было строгим в современном понимании, но уже содержало исследование сходимости большинства полученных им рядов. Для функций, заданных на всей числовой прямой и не являющихся периодическими, Фурье предложил разложение в интеграл Фурье.

Универсальность и эффективность методов анализа Фурье произвели большое впечатление на научный мир. Если ранее тригонометрические ряды использовались в математической физике преимущественно для изучения периодических процессов (колебания струны, небесная механика, движение маятника и т. п.), то в труде Фурье исследовались процессы совсем иного рода (теплопередача), и тригонометрические ряды помогли получить ценные практические результаты. С этого момента тригонометрические ряды и интегралы стали мощным инструментом анализа разнообразных функций. Результаты Фурье продолжили и углубили Пуассон и Коши, вопрос сходимости рядов детально исследовали Дирихле и другие математикиШаблон:Sfn. Риман в своей диссертации исследовал произвольные тригонометрические ряды, не обязательно связанные с разложением какой-либо функции (1853), сформулировал для них «принцип локализации». Вопрос о представимости произвольной измеримой и конечной почти всюду функции тригонометрическим рядом (который не обязательно совпадает с её рядом Фурье) был решён в 1941 году теоремой Меньшова.

Исследуя множества особых точек для тригонометрических рядов, Георг Кантор разработал фундаментальную для всей математики теорию множеств[39]. Огромное влияние теория тригонометрических рядов оказала на развитие комплексного анализа, математической физики, электроники и многих других разделов науки[33]. Теория функций вещественного переменного, теория меры и интеграл Лебега появились и далее развивались в тесной связи с теорией тригонометрических рядов[33][40]. Важные практические применения имеет приближение функций конечными тригонометрическими полиномами[41] (используемое также для интерполирования).

Историки тригонометрии

В XVIII—XIX веках труды по истории математики и астрономии значительное внимание уделяли и истории тригонометрии (Ж. Э. Монтукла, Ж. Б. Ж. Деламбр, Г. Ганкель, П. Таннери и другие). В 1900 году немецкий историк математики Шаблон:Нп3 опубликовал первую монографию в двух томах, специально посвящённую истории тригонометрии[42]. В XX веке крупные работы по этой теме опубликовали И. Г. Цейтен, М. Б. Кантор, О. Нейгебауэр, Б. А. Розенфельд, Г. П. Матвиевская и другие.

См. также

Примечания

Шаблон:Примечания

Литература

Книги

Статьи

Ссылки

Шаблон:История математики Шаблон:Тригонометрия

Шаблон:Избранная статья Шаблон:Статья года

  1. 1,0 1,1 1,2 1,3 Шаблон:Книга
  2. Шаблон:Книга
  3. Шаблон:Книга
  4. Шаблон:Книга
  5. Шаблон:Книга: «Говоря о египетской геометрии, естественно упомянуть «египетские треугольники» – прямоугольные треугольники с целочисленными сторонами, известные и в Месопотамии. В землемерной практике знание таких треугольников позволяло с помощью шнура с завязанными на нем на равном расстоянии узлами размечать прямые углы земельных участков».
  6. Ошибка цитирования Неверный тег <ref>; для сносок MATV92 не указан текст
  7. Шаблон:Книга
  8. Ошибка цитирования Неверный тег <ref>; для сносок GL77 не указан текст
  9. Ошибка цитирования Неверный тег <ref>; для сносок GPM27 не указан текст
  10. 10,0 10,1 Ошибка цитирования Неверный тег <ref>; для сносок GPM33 не указан текст
  11. Ошибка цитирования Неверный тег <ref>; для сносок GPM36 не указан текст
  12. 12,0 12,1 Ошибка цитирования Неверный тег <ref>; для сносок KU156 не указан текст
  13. 13,0 13,1 Ошибка цитирования Неверный тег <ref>; для сносок GPM40 не указан текст
  14. Шаблон:Статья
  15. Шаблон:Статья
  16. Ошибка цитирования Неверный тег <ref>; для сносок KU160 не указан текст
  17. Шаблон:Статья
  18. Ошибка цитирования Неверный тег <ref>; для сносок SC52 не указан текст
  19. Ошибка цитирования Неверный тег <ref>; для сносок GPM51 не указан текст
  20. 20,0 20,1 Ошибка цитирования Неверный тег <ref>; для сносок SM79 не указан текст
  21. Ошибка цитирования Неверный тег <ref>; для сносок G9-60 не указан текст
  22. Туси Насирэддин. Трактат о полном четырёхстороннике. Баку, Изд. АН АзССР, 1952.
  23. Этот трактат был включён в состав «Астрономии», одной из шести частей фундаментального теолого-философско-научного трактата «Войны Господа», над которым Герсонид трудился в ходе всей его жизни.
  24. Rabinovich, Nachum L. Рабби Леви бен Гершом и происхождение метода математической индукции. = Rabbi Levi ben Gershom and the origins of mathematical induction // Archive for History of Exact Sciences. — 1970. — В. 6. — С. 237—248.
  25. 25,0 25,1 Ошибка цитирования Неверный тег <ref>; для сносок GL79 не указан текст
  26. Шаблон:Книга
  27. Ошибка цитирования Неверный тег <ref>; для сносок ZGG129 не указан текст
  28. Шаблон:Книга
  29. Шаблон:Cite web
  30. Шаблон:Книга
  31. Ошибка цитирования Неверный тег <ref>; для сносок U3-205 не указан текст
  32. Ошибка цитирования Неверный тег <ref>; для сносок GL86 не указан текст
  33. 33,0 33,1 33,2 33,3 33,4 Шаблон:Книга
  34. Ошибка цитирования Неверный тег <ref>; для сносок PAP7 не указан текст
  35. Шаблон:Книга
  36. См.: Юшкевич А. П. Главы по истории математики в средние века. — В кн.: История естествознания в России. М.: 1957, т. I, с 45—48.
  37. Ошибка цитирования Неверный тег <ref>; для сносок WIL341 не указан текст
  38. См. статью Б. А. Розенфельда в книге: Каган В. Ф. Основания геометрии. Том II, стр. 313—321.
  39. Шаблон:Статья
  40. Шаблон:Cite web
  41. Шаблон:Книга
  42. Шаблон:Книга